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1. SUMMARY

The research that was conducted on this project fulfilled all the objectives set
forward at the start of the project. We have developed a simulation system that
demonstrates the advantages of our learning and self-repair methodology and
we have initiated a theoretical study into the foundations of a general design
methodology based on learning and self-repair. The theoretical foundation is built
around a framework of clockless logic sequential machines, allowing the theory
to be applied to extensively parallel computing systems.
a) Development and construction of a simulation system: We have  a
simulation system that demonstrates the advantages of learning and self repair
over the existing technology of genetic algorithms. The system demonstrates in
the clear visual way the disadvantages of genetic algorithms: the emergence of
non-viable solutions during the process of chromosome breeding and mutation;
the long time genetic algorithms take to approach optimal performance in high
complexity systems; and the lack of learning, which requires the system to start
from scratch after every significant failure. These disadvantages bring to light the
superiority of the learning block approach we undertook, and point to the
importance of continuing the development of learning methodologies. Here is a
brief review of the setup of our genetic algorithm test framework.

The simulation test bed we used simulates the control of the traffic in a
computer communication network. The simulation system was developed
specifically for the simulation of self-repair algorithms for large scale distributed
computing clusters, the self-repair of computer communication networks, and
self-repair of difficulties in the cooperative operation of multiple combat units. The
simulation system consists of nodes and links, where the nodes control the traffic
flow through the links. In the current format, each node is connected to four
branches that emerge from the node, where each branch allows bi-directional
traffic. Four control handles are provided at each node, allowing to control the
flow rate of each of the four exit gates at each node. The traffic flow rate through
each gate can be controlled independently. In addition, each node generates
traffic that enters the network at the node, simulating data, instructions, or
computing results that originate at the node.

In the case of distributed computing clusters, each node represents a
computing center of the cluster, while the links represent the flow of data,
instructions, and results from one cluster to another. In the case of a computer
communication network, the nodes represent routers and the links represent
conduits of the network. In the case of cooperating combat units, the nodes
represent individual units and the links represent the flow of assigned tasks
among the units.
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2. THE DEMONSTRATION SYSTEM

The demonstration program that was used includes 30 nodes and more than
50 links. Thus, it represents a distributed computing cluster with 30 computing
centers. Each node is capable of emitting traffic into the network, representing
the instructions and data generated at the computing cluster or computing
network node it represents. In addition, each gate at each node has a queue,
indicating elements (instructions or data packets) waiting to leave the node in the
corresponding direction. All the algorithms that are implemented in the system
are scalable, so larger computing clusters can be managed with the same
algorithms.

The status of each node in the simulation is represented by a four digit string
of digits (a quadruplet), where each digit represents the status of one of the four
gates at the node: the first digit represents the west gate, the second digit
represents the north gate, the third digit represents the east gate, and the fourth
digit represents the south gate. Each digit is an integer between 0 and 5, where
a digit c represents a flow rate of 0.2c per second, so that the flow rate varies
between zero (closed gate) and 1 (fully open gate). For example, the string
(0130) indicates that the west gate is closed, the north gate allows a flow of
0.2/sec, the east gate allows a flow of 0.6/sec, and the south gate is closed.

In addition, malfunctions at a node are represented by the character N which
indicates that the corresponding gate of the node is permanently closed. Thus,
the string (00N0) indicates that the east gate of the node is permanently closed;
the west, north, and south gates are also closed at this time, but the algorithm
can open them in its attempt to create a more efficient flow through the
simulation. In this way, the status of the entire system is then represented by a
string of 30 quadruplets; for example, the string
(0240)(N501) ..... (003N).
Each such string represents a possible control option for the traffic flow in our
network. It is often referred to as a chromosome.

To implement a genetic algorithm, we start from an initial population S0 of 4
chromosomes C1, C2, C3, and C4. Except for the locations of the characters N,
which represent defective gates, the characters in each one of the four initial
chromosomes are selected randomly.
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3. THE OPTIMIZATION CRITERION:

When the simulation reaches a steady state, the criterion is taken as
J := number of queues that contain more than 5 elements in steady state.
Note that the values of J are integers.
Step G1: The system is run to steady state with each one of the four initial
chromosomes, and the value of the criterion J is calculated in each case. This
yields the four criterion values J1, J2, J3, and J4. (If one of the chromosomes
does not yield as steady state, then it is discarded and replaced by a randomly
selected new chromosome.)
Step G2: The next step of the genetic algorithm is the reproduction process. We
produce multiple copies of our strings, generating more copies of the strings that
yield a better criterion value. Since we are seeking a minimum in this case, the
number of copies of string Ci is selected in proportion to 1/Ji. For a real number
a, let [a]t be the integer obtained by truncating a. We then create
[100/J1]t copies of the chromosome C1;
[100/J2]t copies of the chromosome C2;
[100/J3]t copies of the chromosome C3;
[100/J4]t copies of the chromosome C4;
This creates a set S1 of chromosomes.
Step G3: The next step is the crossover step: We select randomly four pairs of
chromosomes from the set S1. Let's denote the resulting pairs by (C11,C21),
(C12,C22), (C13,C23), (C14,C24). For each one of these pairs, we select a random
integer 1 � Nk � 30, k = 1, 2, 3, 4. We then create from each pair a new
chromosome, using the following process: for the pair (C1k,C2k), we use the first
Nk quadruplets of C1k and the last (30 – Nk) quadruplets of C2k. Denote by C'k
the resulting chromosome, k = 1, 2, 3, 4. This yields a new set of four
chromosomes.
Step G4: The next step is the mutation step: create a new string S := C'1C'2C'3C'4
of 480 bits by concatenating the four chromosomes. Pick a random integer r in
the range [1, 10000]. If 1 � r � 480 and if position r in S is not N, then switch
the value of character r of S according to the following table:

Original
Value

Switch
to

0 1
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1 2

2 3

3 4

4 5

5 0

N N

Finally, divide S back into 4 chromosomes C1
1, C1

2, C1
3, C1

4. On average, this
process results in the change of one gate value every twenty runs. Repeat from
Step G1.
This process continues until a maximal value of J is obtained.

4. IMPLEMENTATION OF THE GENETIC ALGORITHM

The genetic algorithm framework described above was implemented and run
in a real time simulation, with the objective to optimize system performance after
various failures. The simulations pointed to fundamental deficiencies of the
genetic algorithm approach to the problem of controlling a large digital network
that is subject to defects and failures.
1) One of the fundamental weaknesses of genetic algorithms in our simulations
turned out to be the process of finding the initial four chromosomes. Recall that
the initial four chromosomes C1, C2, C3, and C4 are found through a random
process. However, in our simulations, the vast majority of randomly constructed
chromosomes did not lead to a steady state of the traffic in our simulated
computer network. Instead, the vast majority of randomly selected chromosomes
lead to conditions of network congestion and continually increasing queues at the
network gates. Such chromosomes are, of course, not suitable for the operation
of our traffic network, and they cannot be used as a basis of the process of
breeding new chromosomes. They have been discarded, and new chromosomes
have been selected and tested. In most cases, the simulation had to run through
a rather large number of randomly selected chromosomes, before it was able to
find four chromosomes that control the network to a steady state and do not
induce congestion. Furthermore, the determination of steady state is a rather
lengthy process - the system has to run for a period of time before it can be
determined that steady state has been reached. As this process has to be
repeated after every system failure, it is quite obvious that genetic algorithms do
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not facilitate fast recovery of the computing network after failure, and hence are
not suitable for the application at hand.
2) The process of breeding the chromosomes created similar difficulties. For the
size of the network we are currently using (30 nodes and 50 links) and under
high traffic conditions, it happened rather often that the process of randomly
breeding two chromosomes did not yield a viable chromosome. In other words,
very often chromosomes that resulted from the breeding process lead to traffic
congestion in the network, and did not lead the network toward steady state
traffic conditions. Thus, it seems that, for high complexity systems, the process of
chromosome breeding can become dysfunctional. In such case, we had to return
to the random selection process to create a new chromosome. The latter
process, as indicated earlier, required a lengthy and time consuming process, as
part of the attempt to find a chromosome that controls the traffic in the network
without creating conditions of congestions and allows the network to reach a
steady state.
3) The random mutation process that forms an integral part of the genetic
algorithm process encountered similar difficulties. Sometimes, under heavy
network traffic conditions, genetic mutation that was applied to a good
chromosome resulted in a chromosome that caused conditions of traffic
congestion within our computing network and had to be discarded. As before,
such an occurrence forced us to default back to the random selection process in
order to obtain the missing chromosome. As indicated earlier, the latter process
was fraught with uncertainty, often yielding dysfunctional chromosomes.
4) Recall that one of the main objectives of this research project is to develop a 
control mechanism that allows the system to recover quickly after a significant
malfunction. A significant malfunction in our case refers to a situation where 15%
to 30% of the network's nodes become dysfunctional. To simulate such a
situation, we randomly assign the character N indicating a permanently blocked
node gate to a random fraction of the nodes, varying between 15% and 30%. In
our case, the network has a total of 30 nodes; as each node has 4 gates, we
have a total of 120 gates. To simulate failure, we block a random selection of 18
to 36 nodes out of the total of 120 gates, where the number of blocked nodes is
selected randomly. The objective, of course, is to evaluate the capability of the
genetic algorithm to return the system to proper function.

In this case as well, genetic algorithms do not seem to be an ideal choice for
the task. After failure simulation was applied to our network, the existing
chromosomes often did not perform properly, leading the network to conditions of
traffic congestion. As a result, the existing chromosomes could not be used, and
the entire chromosome generation process had to be re-run. As indicated earlier,
this is a rather time consuming process.

It seems that genetic algorithms do not learn and do not accumulate the
experience necessary to operate a system in the presence of failure. A genetic
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algorithm does not seem to gather intimate knowledge about the system
structure, knowledge that can be used to help the system recover quickly from
significant malfunction. Genetic algorithms do not seem to learn the system's
structure and do not seem capable of helping implement a quick recovery after
major failure. On the contrary, attempts to control the system after significant
failure by using the results of an earlier run of a genetic algorithms often seem to
worsen the system's condition after failure rather than leading the system back to
steady operation.

To summarize, it seems that genetic algorithms are not suitable for running
systems that may vary significantly over the course of time, as is the case with
systems prone to failure. Especially, for systems that are subject to significant
failure and malfunction, genetic algorithms do not provide a general path to
recovery. In most cases, after each malfunction or failure, the entire genetic
algorithm process needs to re-run anew in order to return the computing network
to proper function. Along this process, the process of breeding new genetic
algorithms often destabilizes the system and leads to network congestion,
resulting in an extended period of time during which the system is not
operational. Thus, a new approach must be developed to allow complex systems
to recover automatically from significant failure.

5. LEARNING BLOCKS

The learning block methodology that is being developed as part of this
research project offers substantial advantages when it comes to overcoming the
effects of failure on a complex system. With the learning block methodology,
knowledge about the structure of the system is collected and accumulated, and
this knowledge is automatically used by the system to overcome the effects of
failures and defects. The learning system develops a database that relates
various aspects of performance deterioration to the corrective actions taken in
the past against such failures and malfunctions. This database allows the system
to apply the correct remedy after a malfunction or failure with only a rare process
of trial and error, and to return the network quickly to proper operation. This
database is stored within subroutines of the main learning algorithm.

Before discussing the learning process to be used in our learning block
simulation platform, we briefly review a few specifics about the simulation
platform itself. Recall that our simulation platform consists of a computer
communication network with 30 nodes and about 50 links. Each node has four
gates, which control the flow of data and instructions into the four links that
connect to the node. The state of the computing network is therefore
characterized by a string of 120 characters, which each character describes the
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status of one of the network's gates.
In this context, a learning block represents a list of gates with their

corresponding transmission rates. In other words, each learning block assigns
flow rates to a certain subset of gates in the network. To represent our learning
blocks, we number the gates of our computing network and designate them by
the characters g1, g2, ..., g120. Recalling that the flow rate through a gate is
indicated by one of the integers 1, 2, 3, 4, 5 or by the character N which
indicates a disabled gate, we combine these symbols so that, for example, the
designation g7(3) indicates that gate 7 is open to flow rate 3, or g2(N)
indicates that gate 2 is disabled. In these terms, a learning block is a string
ga(ja) gb(jb)...gl

(j
l
) - it simply indicates the flow rates of the listed gates, and has

no impact on other gates. Thus, for example, the string g3(4)g6(2)g25(5)
indicates that the flow through gate 3 is set to 4; the flow through gate 2 is set
to 6; and the flow through gate 25 is set to 5.

Comparing the learning blocks to chromosomes, recall that the chromosome
in this case is a string of 120 characters, where each character describes the
flow rate through one of the gates of the network. When a chromosome is
activated, it impacts the flow through all the gates in the computing network. The
learning block, on the other hand, affects only the gates that appear in its string,
and has no impact on the other gates of the network.

Once a learning block is applied, we wait for the network to achieve steady
state, and the impact of the learning block on the gate queues in the network is
evaluated. Two outcomes are possible:
1) None of the queues increases in size and steady state is achieved.
2) Some queues continue or start to get bigger.
In case 1), the learning block is left in place and its impact is recorded; in case 2),
the effect of the learning block on the various queues is recorded. This results in
four lists of gates:
a) gates whose queues continue to grow after the application of the tested
learning block;
b) gates whose queues started to grow immediately after the application of the
tested learning block;
c) gates whose queues remained unchanged by the tested learning block.
d) gates whose queues declined after applying the tested learning block.
These four lists are then forwarded to the self-repair algorithm, which uses the
lists to extract information about the topology of the network. Based on its
analysis of current and previous outcomes, the algorithm then selects the next
learning block to be applied to the system. This analysis is based on the notion of
"association degree", which is described later in this report. In this way,
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correction of faults becomes faster and more effective with the progress of time,
as the self-repair algorithm learns the topology of the network from its analysis of
the learning block outcomes.

The implications to our underlying applications are as follows. In the case of a
computing cluster, assume that one of the computing centers of the cluster has
become inoperable due to damage or malfunction, or that a link connecting two
computing centers has been damaged. As a result, the queue of instructions and
results forwarded to the inoperable computing center or to the damaged
computing link starts growing; at some point, it will exceed its warning bound. At
this point, a re-distribution of the flow of instructions between the remaining
computing centers of the cluster is performed through the activation of a learning
block. If the application of the learning block stops the growth of all queues in the
network, then the problem has been corrected. The results are forwarded to the
self-repair algorithm to extract structural information for future use. If the learning
block does not mitigate the growth of all queues, then it is deactivated, and the
results of its impact are forwarded to the self-repair algorithm for analysis. After
analysis, the self-repair algorithm suggests another learning block for testing,
based on its analysis of the network topology. This process improves the reaction
speed and the response capabilities of the system through a learning process.

Similarly, in the case of a digital communication network, the self-repair
algorithm starts when one or more of the packet queues at a router reach the
warning bound. The algorithm then applies a learning block, which consists of a
list of gates whose transmission rate is reassigned. The outcome of the learning
block application is then analyzed by the self-repair algorithm, with the objective
of extracting as much structural information as possible about the network. If
desirable results have not been achieved, the learning block is removed, and
another learning block is selected based on the analysis of previous outcomes. In
this way, the self-repair algorithm learns and becomes able to predict the
implications of applying a learning block, and the self-repair process becomes
more and more efficient as time goes by. Similar implications hold for multiple
cooperating combat units. The learning algorithm creates an association between
each learning block and its impact on the status of the network queues. The
algorithm singles out learning blocks whose impact is consistent under a given
set of circumstances.
EXAMPLE 1. Referring to the 30 node network described earlier in this report,
consider the following learning block.
Learning Block A: increase the flow through the west gate of node 12 by two
steps; closes the south gate of node 18; reduces by one step the flow through
the north gate of node 27.

Suppose that a malfunction occurs in the network, causing an accumulation in
the queues of the following gates: the north gate of node 7; the east gate of node
21; and the south gate of node 25. Assume that Learning Block A is applied after
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this malfunction, and that we notice an improvement in the queues at the east
gate of node 21 and at the south gate of node 25. From this outcome, we can
conclude that Learning Block A influences the traffic in links that affect the traffic
flow to or from the east gate of node 21 and at the south gate of node 25. On the
other hand, it does not seem to have an influence on the traffic in links that lead
to the north gate of node 7. This, of course, is very valuable structural
information, which is stored in the database of the learning system. In the future,
when the system encounters a new malfunction that causes an increase in the
queues of the east gate of node 21 and the south gate of node 25, the system
will attempt to correct the problem by applying Learning Block A.

As the system continues to operate and to handle more and more failures and
malfunctions in the network, it accumulates more and more relationships in its
database, relationships that associate each learning block with the malfunctions
it can correct. The more malfunctions the system has experienced, the more
precise the associations between learning blocks and their corrective effects
become, and the more capable the system becomes in administering a quick
recovery after malfunction.

6. THE LEARNING PROCESS AND THE ASSOCIATION
DEGREE

The learning process is based on a weighting procedure that assigns greater
weight to learning blocks that correct a given problem more often. Consider the
following example. To simplify the wording, we will denote each buffer by a
number and a letter, where the number indicates the node number and the letter
indicates the direction of the buffer's gate. Recall that in our simulation scheme,
every node has four gates - a north gate (N), and east gate (E), a south gate (S),
and a west gate (W). It is convenient to denote every gate by a digit and a letter
in the form nX, where n is the node number of the gate and X in one of the
letters N, E, S, and W. In this notation, 12E indicates gate east of node 12; 20N
designates the north gate of node 20. Assume then that the system went through
two malfunctions:
Malfunction 1: the queues of gates 7S and 15E increase;
Malfunction 2: the queues of gates 7S and 23N increase.
To overcome the impact of these malfunctions, the system attempts two learning
blocks - Learning Block B and Learning Block D, with the outcomes:
Learning Block B stops the queue growth in gate 7S in Malfunction 1 and in
Malfunction 2; Learning Block D stops the queue growth in gates 7S and 23N in
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Malfunction 2 only, and has no effect in the case of Malfunction 1.
These outcomes create a stronger association between Learning Block B and
queue growth in gate 7S, since Learning Block B impacted this queue in both
malfunctions.

To formalize this process, we define the novel concept of the association
degree. The association degree assigns an integer to each combination of a
building block and a network gate, as follows. In formal terms, a pair (Y, nX)
refers to the learning block Y and the gate nX. For example, the pair (C, 9N)
refers to Learning Block C and the north gate of node 9.

The association degree assigns an integer to each pair (Y, nX). The initial
value of this integer is zero, and it is adjusted after analyzing the outcome of
applying learning block Y to a failure that involves the queue at the gate nX.
The association degree of (Y, nX) is increased by one after every distinct failure
pattern for which Learning Block Y reduces the queue at gate X of node n. It
is reduced by one if learning block Y causes an increase in the queue length at
gate X of node n; and it is left unchanged when learning block Y has no effect
on the queue length at gate X of node n.
EXAMPLE 2. Consider the situation described earlier in Example 1. Here, after
the two failure incidents, the association degree of the pair (B, 7S) is 2,
whereas the association degree of the pair (D, 7S) is 1.

The association degree is a dynamical quantity that changes and evolves as
the system experiences its malfunctions. Its value points to the most likely
learning block for overcoming a given malfunction. Intuitively speaking, the
association degree is a quantitative summary of the experience gained by the
system; a record of what the system has learned from its experience.

As the system continues its operation and encounters new malfunctions and
failures, it examines the effects of the malfunction on the queues of the various
gates and generates a list of the gates affected by the malfunction. Then, it
examines its current list of association degrees, and chooses a learning block
that shows a high association degree with the gates affected by the malfunction.
The system then applies the selected learning block and examines the outcome.
If the outcome is satisfactory and all queues have been stabilized, then the
system updates the association degrees and continues its regular operation. If
the outcome is not satisfactory, then the system updates the association degrees
and applies another learning block, choosing from among the remaining blocks
having highest association degree with the affected queues. This process
continues until the system compensates for the effects of the latest malfunction.
The association degree updates generated during this process will improve the
reaction of the system in future malfunctions.

When compared to genetic algorithms, it is quite clear that the learning block
approach provides faster and more effective corrections to system malfunctions.
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When attempting a correction to a malfunction using the learning block approach,
the system does not just apply a random remedy; it applies a remedy that has
worked well in similar situations in the past. Therefore, the probability that the
applied learning block provides an effective remedy is high, and this probability
increases as the system gains more and more experience correcting
malfunctions. The association degree is, therefore, a simple and effective tool for
designing systems capable of learning and self-repair.

7. ADAPTIVE CONTROL OF LEARNING SYSTEMS

This part of our research deals with the development of a general theoretical
framework for the design and implementation of learning and self-repairing
systems. The system under consideration is represented by an asynchronous
sequential machine. An asynchronous sequential machine, sometimes referred
to as a clockless logic circuit, represents the fastest computing machines. This
model captures a broad range of applications, including distributed computing
clusters, highly distributed and extensively parallel computing systems,
asynchronous computer communication networks, and the operation of multiple
combat units.

More specifically, when considering distributed computing clusters, each
computing center in the cluster operates independently, directing instructions and
computational data to other members of the cluster in an asynchronous fashion. 
Data, results, and instructions are generated and transmitted by each computing
center when required by its internal processing, without regard to the status of
other members of the computing cluster. This indicates that the various members
of a computing cluster are working in an asynchronous fashion. Asynchronous
operation has the advantage of providing the highest possible speed, as
computing centers do not have to wait for timing cues arriving from other
computing centers. Furthermore, in cases of high performance computing, each
computing center consists of a large aggregate of parallel processors working
asynchronously. Thus, an asynchronous machine model is the most appropriate
representation of this application area.

Regarding computer communication networks, it is widely known that
asynchronous networks provide a higher throughput than synchronous networks,
as there is no need to generate and wait for timing pulses; the network operates
at the highest speed possible for its components. Consequently, an
asynchronous machine model is most suitable for the representation of high-
throughput computer communication networks.

Finally, regarding the operation of multiple combat units, these most often
result in asynchronous operation as well, since each unit engages the enemy
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and completes its tasks on its own terms, independently of the momentary
operation of other units. Consider, for example, a concerted attack on a
distributed range of mountain caves in enemy territory. Multiple attacks are
initiated by independent units on each cave cluster; obviously, the destruction of
one cave cluster occurs independently of the destruction of another cave cluster,
as some of the cave clusters may be better protected or better built than others.
Each unit then completes its task, without synchronizing the completion with
other units. Thus, the operation of multiple combat units can be considered as an
asynchronous system; our objective is to control this asynchronous system to 
maximize its effectiveness.

To represent faults and defects in the underlying application systems, we
allow our asynchronous machine model to have several unknown transitions. For
the unknown transitions, the outcome is not precisely known; instead, several
options for the transition are provided. Here is an example of a transition with two
options:
EXAMPLE 3. Assume that when the machine is in State 1 and the input
character u is applied, two outcome options are possible: the outcome is either
a transition to State 2 or a transition to State 3. Note that the machine is
deterministic, so that once the outcome of the transition has been determined
experimentally, the same outcome will be repeated in any future activation of the
input character u at State 1. The situation can be represented by the following
state diagram.

To represent an asynchronous machine with unknown transitions, we use the
following transition matrix. Assume that the machine has n states, say x1, x2, ...,
xn. We build an n�n matrix in which each row and each column correspond to a
state. Thus, column 1 and row 1 correspond to the state x1; column 2 and
row 2 correspond to the state x2; and so on. Then, entry i, j of the matrix
consists of all input characters that induce a one step transition from the state xi

to the state xj (i.e., from the state corresponding to the row to the state
corresponding to the column). An input character that induces an unknown
transition from a given state will appear several times in the row corresponding to
the state of origin. Thus, the situation described in Example 3 is represented by
the matrix

State
2

State
3

State
1

Input u
option 1

Input u
option 2
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�
�
�
�

�
�
�
�� u u ... �

� � � ... �

� � � ... �

� � � ... �

� � � ... �

,

where the squares � represent input values not considered in this example. As
we can see, the input character u appears twice in row 1: once to represent a
possible transition from the state x1 to the state x2, and once to represent a
possible transition from the state x1 to the state x3, as indicated in the earlier
state diagram.

If there is no transition possible from the state xi to the state xj, then we
enter the character N in position i,j, where N indicates the lack of a transition
(N is not a character of the input alphabet).

An important step in the development of learning and self-repair algorithms
for an asynchronous machine is the partition of its state set into subsets S := {S1,
S2, ..., Sk} of states that can be reached from each other through a known
transition. Specifically, for any subset Si, all pairs of states within Si are
connected through at least one specified transition. In other words, transitions
within each one of the sets Si are known and specified at the present time. On
the other hand, transitions from one subset to another, say transitions from states
of the subset Si to states of the subset Sj, i � j, if possible, involve an unknown
(or unpredictable) transition. As the learning and self-repair process revolves only
around the management of unpredictable transitions, this partition of the state
space results in a substantial reduction of computational complexity of the
learning algorithms.

The partition S discussed in the previous paragraph is dynamic, namely, it
changes as the system learns the outcome of more and more unpredictable
transitions. In fact, the learning process of the machine is represented by the
evolution of the partition S. The number of elements in S becomes smaller and
smaller as the machine learns the outcome of more and more unpredictable
transitions.

Recall that an asynchronous machine is described by an equation of the form
xk+1 = f(xk,uk),

where xk is the state of the machine at step k, and uk is the input of the
machine at step k. To represent this machine in our theoretical framework, we
have developed the one-step transition matrix, which was described earlier. Let
x1, x2, ..., xn be the states of the machine. The one-step transition matrix is then
an n�n matrix in which each row and each column correspond to a state. Thus,
column 1 and row 1 correspond to the state x1; column 2 and row 2
correspond to the state x2; and so on. Then, entry i, j of the matrix consists of
all input characters that induce a one step transition from the state xi to the state

13



xj (i.e., from the state corresponding to the row to the state corresponding to the
column).
EXAMPLE 4. Consider a machine with two states, x1 and x2. Suppose the
machine accepts two input characters a and b. Then, the one step reachability
matrix

�
�
�

�
�
�a b

b a
indicates the following: the input character a leaves the machine in the state x1

and in the state x2; the input character b takes the machine from the state x1

to the state x2 and from the state x2 to the state x1.
Assume further that the machine is affected by a malfunction, as a result of

which some of the transitions are not known. In the above example, suppose we
don't know exactly what transitions the input character a causes when the
machine is in the state x1. For example, suppose, when the machine is in state
1, the input character a either leaves the machine in the state x1 or causes a
transition to the state x2. In such case, the one-step transition matrix takes the
form:

�
�
�

�
�
�a a‚ b

b a .

The matrix indicates that, when the machine is in the state x1, the following
options are possible: when the input character a is applied, the resulting
transition might be either to the state x1 or to the state x2; if the character b is
applied, the system moves to the state x2. The remaining transitions are as
before. Thus, the one-step transition matrix is a very convenient way to represent
uncertainties in the function of an asynchronous machine, uncertainties created
by malfunctions or lack of precise information about the machine.

Dealing with one-step transition matrices that include uncertainties requires a
special mathematical framework, which has been developed as part of the
current research project. This framework is described in the following
publications, which are attached as part of this report.

8. PUBLICATIONS

The following publications report about material developed in this project.
J. M. Yang and J. Hammer
[2007] "Counteracting the Effects of Adversarial Inputs on Asynchronous
Sequential Machines", submitted for publication.
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J. M. Yang and J. Hammer
[2007] "State Feedback Control of Asynchronous Sequential Machines with
Adversarial Inputs", submitted for publication.
Copies of these publications are provided in the Appendix.

9. CONCLUSIONS

The present report presents a summary of the research conducted under
Grant number FA8750-06-1-0175. In the course of this research, we introduced a
new methodology for the design of engineering systems: the learning block
methodology. This methodology forms a theoretical foundation for the
development of equipment and systems capable of learning and self repair.
During the course of the research, other methodologies that could potentially be
used for the design of learning and self repairing systems were examined and
compared to the learning block methodology. Specifically, significant effort was
devoted to the examination of genetic algorithms in this context. The conclusion
of this effort was that genetic algorithms do not form a suitable foundation for
learning and self repairing systems.

The research performed under this grant shows that the learning block
methodology forms a solid and efficient foundation for the design of learning and
self repairing systems. Further research in this direction would explore the
application of this methodology as a supervisory tool for specific critical systems,
including flight control systems and large-scale distributed computing clusters.
The studies conducted under the project reported here indicate that the learning
block methodology can help improve the reliability and failure-endurance of such
systems but at least an order of magnitude. 
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10. APPENDIX: PUBLICATIONS

This appendix includes copies of the following two publications:

J. M. Yang and J. Hammer
[2007] "Counteracting the Effects of Adversarial Inputs on Asynchronous
Sequential Machines", submitted for publication.
J. M. Yang and J. Hammer
[2007] "State Feedback Control of Asynchronous Sequential Machines with
Adversarial Inputs", submitted for publication.

Hard copies of the publications are attached. The publications are also included
in the pdf version of this report.
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Abstract: The problem of counteracting the effects of adversarial inputs on the operation of an
asynchronous sequential machine is considered. The objective is to build an automatic state-feedback
controller that returns an asynchronous sequential machine to its original state, after the machine has
undergone a state transition caused by an adversarial input. It is shown that the existence of such a
controller depends on certain reachability and detectability properties of the affected machine.

1. INTRODUCTION

In modern computing systems, one often encounters
unauthorized and adversarial input agents that attempt to
interfere with the proper operation of the system. We address
the question of how a computing system can be made
immune to such interferences. Our approach is based on
automatic control: we deploy feedback controllers that take
corrective action whenever an adversarial input attempts to
affect the operation of the underlying computing system.

Specifically, we consider asynchronous sequential machines
with two inputs: an input for controlling the machine (the
control input), and an input used by an adversarial agent (the
adversarial input). The control diagram is as follows.

(1.1)

Here, � is the asynchronous sequential machine being
controlled, and C is another asynchronous machine serving
as the controller. The control input of � is u and the
adversarial input is w. The controller C counteracts action
at w, making it possible for the closed loop machine to
operate without interference. Necessary and sufficient
conditions for the existence of C are presented in section 6,
which also includes a description of the controller's structure.
The closed loop machine of the diagram is denoted by
�c(v,w), with v being the external command input.

Recall that an asynchronous sequential machine can be in a
stable state or in a transient state. At a stable state, the
machine dwells indefinitely until the input character is

changed. Transient states are traversed by the machine very
quickly (ideally, in zero time), and are imperceptible by the
user. Thus, when counteracting the effects of an adversarial
input, it is only necessary to eliminate the effects on stable
states. The operation of the controller C is, in fact, based on
this principle: when the adversarial input causes a state
transition of �, the controller turns the new state into a
transient state of the closed loop machine, and returns � to
the stable state it had before the interference. Thus, �
resumes its original state very quickly (ideally, in zero time),
and the effect of the adversarial input is eliminated.

Our discussion is within the framework developed by
MURPHY, GENG, and HAMMER [2002 and 2003], GENG
and HAMMER [2004 and 2005], and VENKATRAMAN and
HAMMER [2006a, b, and c]. Studies dealing with other
aspects of discrete event systems can be found in
RAMADGE and WONHAM [1987], HAMMER [1994,
1995, 1996a, 1996b, 1997], DIBENEDETTO, SALDANHA,
and SANGIOVANNI–VINCENTELLI [1994], THISTLE
and WONHAM [1994], BARRETT and LAFORTUNE
[1998], the references cited in these papers, and others. These
publications do not address issues peculiar to the operation of
asynchronous machines, such as the avoidance of critical
races and the distinction between stable and transient states.

2. NOTATION AND BASICS

The machines we consider have a control input and an
adversarial input, and they provide their state as output. Such
machines are represented by a triplet (A�B‚X‚f), where A
is the control input alphabet, B is the adversarial input
alphabet, X is a set of states, and f : X�A�B � X is the
recursion function. The operation is according to

xk+1 = f(xk‚uk‚wk); (2.1)

here, u0‚ u1‚ u2‚ ... is the control input sequence; w0, w1, w2,
... is the adversarial input sequence; and x0‚ x1‚ x2‚ ... is the

C �
yuv

w
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sequence of the machine's states. The step counter k
advances by one at a change of the machine's inputs or state.

(2.2) EXAMPLE. An asynchronous machine � with the
control input alphabet A = {a, b}; the adversarial input
alphabet B = {�, 	}; and the state set X = {x1, x2, x3}. The
recursion function f is described by the transition table:

state (a,�) (a,	) (b,�) (b,	)
x1 x1 x1 x1 x2

x2 x3 x1 x2 x2

x3 x3 x3 x1 x2

A triplet (x,u,w) is a stable combination if x = f(x,u,w), i.e.,
if the state x is a fixed point of the function f. A machine
lingers at a stable combination until an input changes. A
triplet (x,u,w) that is not a stable combination starts a chain
of transitions x1 = f(x‚u,w)‚ x2 = f(x1‚u,w)‚ ... If this chain
terminates, then there is an integer q � 1 for which xq =
f(xq,u,w); then, (xq,u,w) is a stable combination and xq is
the next stable state. If this chain of transitions does not
terminate, then (x,u,w) is part of an infinite cycle. In this
paper, we consider only machines with no infinite cycles;
thus, every triplet (x,u,w) has a next stable state, as follows.

(2.3) LEMMA. In an asynchronous machine without infinite
cycles, there is always a next stable state. 


To prevent unpredictable outcomes, it is common to enforce
a policy where only one variable of an asynchronous machine
is allowed change value at any instant of time (e.g., KOHAVI
[1970]). This is referred to as fundamental mode operation.
All the machines in this paper operate in fundamental mode.

(2.4) DEFINITION. An asynchronous machine � operates
in fundamental mode if its inputs change value only when �
is in a stable combination, and then at most one at a time. 


In fundamental mode operation of the configuration (1.1),
only one of the machines � or C can undergo transitions at
any instant of time. This leads us to:

(2.5) PROPOSITION. Configuration (1.1) operates in
fundamental mode if and only if the following hold:
(i) C is in a stable combination while � undergoes
transitions, and � is in a stable combination while C
undergoes transitions.
(ii) The inputs u, w, and v change only while � and C are
in a stable combination, and then only one at a time. 


Thus, the controller C must be designed so that (i) it
commences transitions only after verifying that � is in a
stable combination, and (ii) it adopts a stable combination
before inducing a change in the input of �. This assures that
the closed loop system is unambiguous and deterministic. As
transitions of asynchronous machines are very quick (ideally,
in zero time), fundamental mode operation is not restrictive.

3. ADVERSARIAL INPUTS

In general, the adversarial input character wk is not

specified; it is only known that it belongs to a specified
subset � � B called the adversarial uncertainty. To include
this information, we write � = (A�B‚X‚f‚�). Starting from
the initial state x0 and applying the control input character
u0, the next state of � can be any member of the set

f[x0�u0��] := Uw�� f(x0,u0,w) � X.

To describe stable transitions of the machine �, let x be the
next stable state of (x,u,w). The stable recursion function s
is defined by setting s(x,u,w) := x. Considering adversarial
uncertainty, all possible next stable states form the set

s�(x,u) := s[x,u,�] = {s(x,u,w) : w � �} � X. (3.1)

4. DETECTABILITY AND REACHABILITY

By Proposition 2.5, fundamental mode operation requires the
controller C to remain in a stable combination until � has
reached its next stable state. To examine the conditions under
which such a controller can be implemented, let w be an
adversarial input character. Assume that � is in a stable
combination at the state x, when the control input changes to
u. Then, � embarks on the string of transitions

�(x,u,w) := {x1 := f(x,u,w), x2 := f(x1,u,w), ..., xi(u,w) :=
f(xi(u,w)–1,u,w)}, (4.1)

where xi(u,w) is the next stable state. The set of all transition
strings consistent with the adversarial uncertainty � is:

�[x,u,�] := {�(x,u,w) : w � �}. (4.2)

The next notion characterizes our ability to determine by state
feedback whether or not � has reached its next stable state.

(4.3) DEFINITION. Let � be in a stable combination with
the state x, when the control input character changes to u.
The pair (x,u) is detectable if it is possible to determine by
state feedback whether � has reached its next stable state. 


Here is a test to determine whether a pair is detectable.

(4.4) THEOREM. Let � be in a stable combination with the
state x, when the control input character changes to u. Then,
(i) and (ii) are equivalent for adversarial uncertainty �:
(i) The pair (x,u) is detectable.
(ii) States of the set s�(x,u) appear only at the end of strings
belonging to �[x,u,�].

Proof (sketch). Consider a string �(x,u,w) = {x0, x1, x2, ...,
xi(u,w)}, where w � �, and assume, by contradiction, that (ii)
is not valid. Then, xj � s�(x,u) for an integer 0 � j < i(u,w),
so that (xj,u,w) is a transient combination, since j < i(u,w).
The inclusion xj � s�(x,u) implies that there is an adversarial
input character w � � for which (xj,u,w) is a stable
combination. Thus, xj is a transient state in (xj,u,w) while
being a stable state in (xj,u,w), so that, at the state xj, one
cannot tell whether � is in a stable state. Whence, (i) implies
(ii). Conversely, if every state x � s�(x,u) appears only at
the end of a string in �[x,u,�], then x is always a stable
state of �, and (ii) implies (i). 





18



Thus, we can determine whether � has reached its next
stable state by checking if the current state of � is in s�(x,u).
Next, we adapt to our present setting the following notion
from MURPHY, GENG, and HAMMER [2002] and [2003].

(4.5) DEFINITION. Let � be an asynchronous machine
with the state set X = {x1, x2, ..., xn} and the stable transition
function s. Let w � B be an adversarial input character. The
one-step matrix of stable transitions �(�,w) of � is an n�n
matrix whose (i,j) entry �ij(�,w) consists of all pairs w|u,
where u is a control input character satisfying xj = s(xi,u,w);
if there is no such u, then �ij(�,w) := w|N, where N is a
character not in A or in B:

�ij(�,w) = �
�
�w|N if {u � A : xj = s(xi,u,w)} = �‚
{w|u : u � A and xj = s(xi,u,w)} otherwise. 


(4.6) EXAMPLE. For the machine � of Example 2.2,

�(�,�) =
�
�
�

�
�
�{�|a,�|b}{�|N}{�|N}

{�|N} {�|b} {�|a}
{�|b} {�|N} {�|a}




To work with �(�,w), we use the following projections: (A+

is the set of all non-empty strings of characters of A.)

�a w|u := �
�
�w if u � N‚
� else‚ (onto adversarial value), and

�c w|u := u for all w|u � B|(A+
U N) (onto control value).

For two sets of strings s1, s2 � B|(A+
U N), we define an

operation s1 � s2 akin to union by using the difference set

s1 � s2 := [s1 U s2] \ sN,

where sN is the set of all elements w|N � s1 U s2 for which
[w|A+] I [s1 U s2] � �, i.e., all elements that appear both with
N and non-N control input strings. Next, concatenation of
strings w1|u1, w2|u2 � B|(A+

U N) is given by

conc(w1|u1,w2|u2) := �
�
�w1|u1u2 if w1 = w2 and u1‚ u2 � N‚
w1|N‚ w2|N otherwise.

For subsets of strings �1, �2 � B|(A+
U N):

conc(�1,�2) := �s1��1‚s2��2
conc(s1,s2).

Now, define an operation similar to matrix multiplication for
two n�n matrices P, Q with entries in B|(A+

U N):

(PQ)ij := �k=1,...,n conc(Pik,Qkj), i, j = 1, 2, ..., n.

We can use the powers �k(�,w) = �k–1(�,w)�(�,w), k = 1, 2,
... The i, j entry of �k(�,w) consists of all strings w|u that
take � from a stable combination with the state xi to a
stable combination with the state xj in exactly k steps; if
there is no such string, then u = N.

(4.7) EXAMPLE. Continuing Example 4.6:

�2(�,�) =
�
�
�

�
�
�{�|aa,�|ab,�|ba,�|bb} {�|N} {�|N}

{�|ab} {�|bb}{�|ba,�|aa}
{�|ab,�|ba,�|bb} {�|N} {�|aa}




The matrix of m stable transitions of � is defined by

R(m,�,w) := �i=1,...,m �i(�,w); (4.8)

it characterizes all the transitions that can be accomplished in
m or fewer stable steps. Allowing m to grow indefinitely
yields the extended matrix of stable transitions R*(�,w) :=
�i � 1 �i(�,w) that characterizes all stable transitions of �.
The next statement resembles MURPHY, GENG, and
HAMMER [2003, Proposition 3.9].

(4.9) LEMMA. The following are equivalent for all integers
m � n–1 and all i, j = 1, 2, ..., n.
(i) The entry Rij(m,�,w) includes a string w|u with u � N.
(ii) The entry R*

ij(�,w) includes a string w|u with u � N. 


Thus, when m � n–1, the matrix R(m,�,w) characterizes all
stable transitions of � for the adversarial input character w.

(4.10) DEFINITION. For the adversarial input uncertainty �,
the one-step stable transitions matrix �(�,�) is an n�n
matrix with entries �ij(�,�) := �w�� �(�,w), i, j = 1, 2, ..., n. 


The matrix �(�,�) includes all one-step stable transitions
that are compatible with an adversarial input character in �.

5. COMPLETE SETS OF STRINGS

The next notion is critical for feedback control (compare to
VENKATRAMAN and HAMMER [2006a, b, c]).

(5.1) DEFINITION. Let � be an asynchronous machine
with the adversarial uncertainty �, and let xi, xj be states of
�. There is a feedback path from xi to xj if there is a state
feedback controller that takes � from a stable combination
with xi to a stable combination with xj in fundamental
mode, given only that the adversarial input is within �. 


Below, we develop a test to determine whether there is a
feedback path from xi to xj. If a feedback path exists, then
an automatic controller can undo undesirable transitions from
xj to xi. Note that, due to fundamental mode operation, the
adversarial input remains constant along a feedback path.

Adversarial uncertainty may decline along a feedback path,
since the machine's response provides information about the
adversarial input. For example, let the adversarial uncertainty
be � = {w1, w2}, and let s be the stable recursion function
of �. Assume that � is at a stable combination with the state
x and the control input character u, when the control input
changes to u. We have two options for the next stable state:

x := s(x,u,w1) when the adversarial input character is w1;
x�:= s(x,u,w2) when the adversarial input character is w2.

Clearly, if x � x�, then we can determine the adversarial
input character from the next stable state, resolving the
uncertainty. Thus, the adversarial uncertainty may decline
along a feedback path. To discuss the general case, we need
some notation. Let S � B|A+ be the set of all strings that
take � from a stable combination with the state x to a
stable combination with the state x, i.e., all strings w|u =
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w|u0u1... � B|A+ for which s(x,u,w) = x. For a string � =
w|u0u1...uk � S and an integer q � 0, denote

�|q := �
�
�w|u0u1...uq if q � k‚
w|u0u1...uk if q > k.

The string �|q takes � to a stable combination with the state
xq := s(x,�|q) := s(x,u0u1...uq,w), passing through the stable
states x0(�) := s(x,�|0), x1(�) := s(x,�|1), ..., xq(�) := s(x,�|q),
where x0(�) = x and xk(�) = x.

For a string � = w|u0u1...uk � S, denote

�p � := �
�
�up for p = 0‚ 1‚ ...‚ k‚
uk for all p > k.

Now, let � be in a stable combination with the state z when
the control input value changes to u, and let z� be the next
stable state of �. The set of all adversarial input characters
w � � compatible with the transition s(z,u,w) = z� is

sa(z,u,z�) := {w � � : s(z,u,w) = z�}. (5.2)

In particular, when � is at a stable combination with the
initial state x0 := x and the control input character u0, the
adversarial input character w must satisfy

w � �(x0,u0) := sa(x0,u0,x0) I � � � (5.3)

Thus, �(x0,u0) is the true initial adversarial uncertainty. For
the transition from x0 to x to be possible, S must contain a
path for each adversarial input character w � �(x0,u0), i.e.,
we must have �(x0,u0) � �a S. Otherwise, S would be
incompatible with potential adversarial inputs. Further, let u1
be a control input character, and define the set

S(x0,u0u1) = {� � S : �|1 = w|u0u1 for some w � B}

of all strings of S whose control input starts with u0u1.
Clearly, u1 can be a next control character only if it is
compatible with all possible adversarial inputs, i.e., only if

�(x0,u0) � �a S(x0,u0u1).

Also, the pair (x0,u1) must be detectable to facilitate
fundamental mode operation of the closed loop machine,
since the controller must react at the next stable state.

Now, let x1 be the next stable state reached with the control
input character u1; the state x1 can be read by the state
feedback controller. The fact that � reached x1 implies that
the adversarial input value w must be within the set

�(x0x1,u0u1) := sa(x0,u1,x1) I �(x0,u0).

Continuing in this way, suppose that we are at step p of the
path. Let u0u1...up be the control input characters applied so
far, and let x0x1...xp be the stable states � has passed as a
result. The current uncertainty �(x0...xp,u0...up) � B about
the adversarial input value is called the residual adversarial
uncertainty. By iterating the earlier steps, we get

�(x0...xp,u0...up) := sa(xp–1,up,xp) I �(x0...xp–1,u0...up–1). (5.4)

Now, let S(x0x1...xp,u0u1...up) be the set of all strings � � S

having the control inputs u0u1...up and taking � through the
stable states x0, x1, ..., xp. For a control input character d,
denote by S(x0x1...xp,u0u1...upd) the set of all strings � �
S(x0x1...xp,u0u1...up) that have the character d as their next
control input character. Then, the set of all adversarial input
characters compatible with d is �aS(x0x1...xp,u0u1...upd).
This set must be compatible with the residual adversarial
uncertainty, namely,

(5.5) LEMMA. The character d � A can be used as the next
control input character of the machine � only if
�(x0x1...xp,u0u1...up) � �a S(x0x1...xp,u0u1...upd). 


We show later that the condition of Lemma 5.5 is critical for
the existence of a controller that automatically counteracts
adversarial transitions. This leads us to the following.

(5.6) DEFINITION. Let S � B|A+ be a set of strings taking
� from a stable combination with the state x0 to a stable
combination with the state x. Then, S is a complete set if
the following hold for all p = 0, 1, ... and for all control input
characters d � �p+1 S(x0x1...xp,u0u1...up):
(i) �(x0x1...xp,u0u1...up) � �a S(x0x1...xp,u0u1...upd), and
(ii) The pair (xp,d) is detectable with respect to the residual
adversarial uncertainty �(x0x1...xp,u0u1...up). 


A complete set of strings can be replaced by one of bounded
length, as follows. (For a set of strings S � B|A+, denote by
|S| the maximal length of a control input string in S. For a
finite set Z, denote by #Z the number of elements in Z.)

(5.7) LEMMA. Let � be in a stable combination at the state
x0 and the control input value u0. If there is a complete set of
strings from x0 to x, then there also is such a complete set
S satisfying |S| � [#�(x0,u0)](n – 1).

Proof (sketch). Consider a string � = w|u = w|u0u1...uk � S
and let x0x1...xk be the stable states through which � passes
as a result of receiving the control input string u. Let �i be
the residual uncertainty at step i of the path, where �0 :=
�(x0,u0). Then, �i is a monotone declining function of i, and
its minimal value is not less than 1. Divide the interval [0, k]
into segments of constant residual uncertainty [0, i1], [i1+1,
i2], ..., [im+1, k], where �i is constant over each one of these
subintervals. Since �i is monotonously declining and its
minimum cannot be less than 1, we get m + 1 � �(x0,u0), or
m � �(x0,u0) – 1.

Now, if any of these subintervals [i, i] has length l � n,
then the string of states xixi+1...xi must contain a repeating
state, say x := xp = xr, where i � p < r � i+l. Since �p = �r by
construction, the control input value up can be replaced by
the control value ur without disturbing the stable
combination at step p. Then, steps p+1, p+2, ..., r can be
eliminated from the string, yielding a new segment with the
length of l – (r – p). This process can be repeated again and
again, until the length of the resulting segment is less than n.
Applying the same procedure to each one of the segments, we
obtain a new path of length not exceeding (m+1)(n–1) =
[#�(x0,u0)](n – 1). 
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This brings us to the main result of this section.

(5.8) THEOREM. Let � = (A�B,X,f,�) be an asynchronous
machine and let x and x be two states of �. Then, the
following two statements are equivalent.
(i) There is a state feedback controller C that drives � from
a stable combination with x to a stable combination with x
in fundamental mode operation.
(ii) There is a complete set of strings S � B|A+ taking �
from a stable combination with x to a stable combination
with x.

Proof (sketch). Assume that (ii) is valid. We use S to build a
state feedback controller F(x,x,v) which, upon receiving the
external input character v � A, generates a string of control
input characters that takes � from a stable combination with
x0 := x to a stable combination with x in fundamental mode
operation. To this end, let � be in a stable combination with
x0, and pick a control input character u1 � �1 S. Since S is
a complete set of strings, (x0,u1) is detectable with respect
�(x0,u0). Also, �(x0,u0) � �a S(x0,u0u1), so u1 is compatible
with all possible adversarial inputs. Denote by � the state
set of F(x,x,v), by � the recursion function of F(x,x,v),
and by � the output function of F(x,x,v); let  0 be the
initial state of F(x,x,v). We construct now � and �.

Upon a detectable transition of � to x0 with the control
input character u0, the controller moves to a stable
combination with its state  1, readying for controller action
at the command v. To this end, set

�( 0,(z,t)) :=  0 for all (z,t) � (x0,u0),
�( 0,(x0,u0)) :=  1, �( 1,(x0,u0)) :=  1.

While in the states  0 or  1, the controller applies to the
control input of � the external input it receives, namely

�( 0,(z,t)) := t, �( 1,(z,t)) := t for all (z,t) � X�A,

If, while at  1, the controller F(x,x,v) receives the external
input character v (the command to start controller action), it
moves to a stable combination with its state  2:

�( 1,(z,t)) :=  1 for all (z,t) � (x0,v),
�( 1,(x0,v)) :=  2, �( 2,(x0,v)) :=  2.

At  2, the F(x,x,v) applies the first character u1 of the
control input string that takes � to the state x, so we set

�( 2,(x0,t)) := u1 for all t � A.

Since S is a complete set, u1 makes � move to the state x1

through a detectable transition. Whence, � is in a stable
combination when it reaches x1. Upon detecting x1, the
controller moves to a stable combination with its state  3:

�( 2,(z,t)) :=  2 for all (z,t) � (x1,u1),
�( 2,(x1,v)) :=  3, �( 3,(x1,v)) :=  3.

At  3, the controller applies the next control input value u2 �
�2 S(x0x1,u0u1): �( 3,(x1,t)) := u2 for all t � A. Since S is a
complete set of strings, the pair (x1,u2) is detectable for the

current adversarial uncertainty �(x0x1,u0u1) and �(x0x1,u0u1)
� �a S(x0x1,u0u1u2). We continue in this way until the
controller F(x,x,v) generates the last input character of the
string, bringing � to x. By Lemma (5.7), the state x can
be reached in at most (n – 1)[#�(x0,u0)] steps.

Conversely, assume that (i) is valid, and let F(x,x,v) be the
corresponding controller. Let S � B|A+ be the set of strings
that F(x,x,v) may generate for the various possible
adversarial input characters. To show that S is a complete
set, consider a control input string u0u1...up that F(x,x,v)
applies to �, and let x0x1...xp be the stable states through
which � passes as a result. By (5.4), the adversarial
uncertainty at step p � 0 is �(x0x1...xp,u0u1...up). By
fundamental mode operation of the closed loop machine, the
pair (xp,up+1) is detectable with respect to
�(x0x1...xp,u0u1...up). By Lemma 5.5, �(x0x1...xp,u0u1...up) �
�a S(x0x1...xp,u0u1...upd). Hence, S is a complete set. 


An algorithm for finding complete sets of strings is described
in YANG and HAMMER [2007]. We turn now to an
important definition. By (5.3), we have �(x0,u0) � �, so that
#�(x0,u0) � #�. Invoking Lemma 5.7, we conclude that a
complete set of strings S can always be selected so that

|S| � (n – 1)(#�). (5.9)

Recalling the matrix R(m,�,w), taking m = (n – 1)(#�), and
including all adversarial characters of �, we arrive at the
following.

(5.10) DEFINITION. The n�n matrix
R(�,�) := �w�� R((n–1)(#�),�,w)

is the combined matrix of stable transitions of an
asynchronous machine � with adversarial uncertainty �. 


Considering (5.9), Lemma 5.7, and Theorem 5.8, we reach
the following conclusion.

(5.11) CORROLARY. Let � be an asynchronous machine
with adversarial uncertainty � and state set X = {x1, ..., xn}.
The statements below are equivalent for all i, j = 1, 2, ..., n:
(i) There is a state feedback controller that takes � from a
stable combination with xi to a stable combination with xj

in fundamental mode operation.
(ii) The i, j entry of R(�,�) includes a complete set of
strings. 


6. COUNTERACTING ADVERSARIAL TRANSITIONS

Let � be an asynchronous machine at a stable combination
(x,u,w), when the adversarial input character switches to w.
An adversarial transition occurs if this switch causes � to
move to a new stable state x � x. In this section, we discuss
state feedback controllers that automatically counteract
adversarial transitions. In order to operate in fundamental
mode, it must be possible for the controller to determine from
the state of � whether or not it has reached the next stable
state. The following is analogous to Definition 4.3.

(6.1) DEFINITION. Let � be at a stable combination with
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the state x and the control input character u. The pair (x,u)
is adversarially detectable if, after an adversarial transition, it
can be determined from the current state of � whether or not
� has reached its next stable state. 


Assume then that � is at a stable combination (x,u,w), when
the adversarial input character changes to w, causing � to
move to a stable combination with the state x � x. This
transition may consist of a number of intermediate steps, say
x0 := x, x1 := f(x0,u,w), x2 = f(x1,u,w), ..., xq := f(xq–1,u,w) =
x, xq := f(xq,u,w). Similarly to (4.1) and (4.2), we denote

�
�
��(x‚u‚w) := x1...xq‚
�[x‚u‚�] := {�(x‚u‚w) : w � �}. (6.2)

The following has a proof similar to that of Theorem 4.4.

(6.3) THEOREM. The two statements are equivalent:

(i) The pair (x,u) is adversarially detectable with respect to
the adversarial uncertainty �.
(ii) States of the set s�(x,u) appear only at the end of strings
belonging to �[x,u,�]. 


To guarantee fundamental mode operation of the closed loop
machine, the use of the machine � must be restricted to
adversarially detectable pairs. This leads us to the following
notion. (For a string � = w|u1u2...uq � B�A+, denote by �+

c �
:= uq the last control input character of the string.)

(6.4) DEFINITION. Let � be an asynchronous machine
with n states, adversarial uncertainty �, and combined
matrix of stable transitions R(�,�). The reduced matrix of
stable transitions Rr(�,�) is obtained by removing from each
column j = 1, 2, ..., n of R(�,�) all strings � for which the
pair (xj,�+

c �) is not adversarially detectable. 


(6.5) EXAMPLE. In Example 2.2, � has only one
adversarial transition: (x1,b,�) � (x1,b,	) � (x2,b,	). Then,
�[x1,b,�] = x1 and �[x1,b,	] = x2, so �[x1,b,�] = {x1, x2}.
Also, s�(x1,u) ={x1, x2} here. Thus (x1,b) is adversarially
detectable by Theorem a381, and Rr(�,�) = R(�,�). 


The set of adversarial input characters that give rise to an
adversarial transition from a stable combination with the pair
(xs,u) to a stable combination with the pair (xt,u) is

�(xs,xt,u) := sa(xs,u,xt) I �. (6.6)
Here, a transition occurs if and only if �(xs,xt,u) � �. We can
state now the main result of this section; the proof is similar
to that of Theorem 5.8.

(6.7) THEOREM. Let � be an asynchronous machine with
the state set {x1, x2, ..., xn} and the reduced matrix of stable
transitions Rr(�,�), and let xs and xt be states for which
�(xs,xt,u) � �. Then, the following are equivalent:
(i) There is a state feedback controller that automatically
reverses an adversarial transition from the state xs to the
state xt in fundamental mode operation.
(ii) The entry Rr

ts(�,�) includes a complete set of strings
with respect to the adversarial uncertainty �(xs‚xt‚u). 
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1. INTRODUCTION

Unauthorized and adversarial input agents have, regretfully, become an unavoidable feature of modern day
computing. These agents aim to interfere with the proper operation of computing systems, often attempting to
subdue them to hostile objectives. The present paper addresses the question of how a computing system can be made
immune to such attempts to interfere with its operation. The approach taken here is based on automatic control.
Specifically, we propose to deploy automatic controllers that continually monitor a computing system and take
corrective action whenever an adversarial input attempts to intercede. The paper presents necessary and sufficient
conditions for the existence of such controllers; when a controller exists, an algorithm for its design is also provided.

In formal terms, the discussion revolves around asynchronous sequential machines that have two input signals:
one input signal facilitates control of the machine, while the other input signal is used by an adversarial agent (or by
a disturbance) to interfere with the operation of the machine. The control diagram is as follows.

(1.1)

Here, � is the asynchronous sequential machine being controlled, and C is another asynchronous sequential
machine that serves as a controller. The machine � has two inputs: u is the control input used to steer the machine
to proper operation; and w is the adversarial input operated by an adversarial agent or by a disturbance. The
purpose of the controller C is to counteract action at the input w and to endow the closed loop machine with
desirable behavior. Section 7 presents necessary and sufficient conditions for the existence of such a controller C,
and section 8 describes the structure of the controller. The closed loop machine described by the diagram is denoted
by �c(v,w), where v is the external input of the closed loop machine. In our present discussion, C is a state
feedback controller - it has access to the state of the machine �.

Our discussion is within the context of model matching. Let �� be an asynchronous sequential machine that
describes the desired behavior of the closed loop system. We refer to �� as the model. Of course, the model �� is
not affected by the adversarial input w - it has no adversarial input; �� accepts only user commands as its input.
The purpose of the controller C is to drive the machine � so that, from a user's perspective, the closed loop system
matches the behavior of the model ��, irrespective of actions taken at the adversarial input. In other words, we
would like to have �c(•,w) = ��(•) for all adversarial input values w. This is the perturbed model matching
problem.

Recall that an asynchronous sequential machine has two kinds of states : stable states, namely, states at which
the machine dwells indefinitely with its present input value, and transient states - states the machine passes
transiently along its way to the next stable state. Only stable states are perceivable by the machine's user; transient
states are traversed by the machine very quickly (ideally, in zero time), and are imperceptible to the user. Thus,
when eliminating the effects of an adversarial input, it is only necessary to eliminate the effects on stable states;
effects on transient states are unnoticeable and, therefore, inconsequential.

The ability to control an asynchronous machine � so as to eliminate the effects of adversarial inputs and match
a specified model depends on certain features of reachability and detectability introduced in section 4. The essence
of these features is condensed in sections 6 and 7 into a numerical matrix of zeros and ones, called a skeleton matrix.
The skeleton matrix characterizes the possibilities of controlling the machine � in the presence of an adversarial
input. More specifically, the skeleton matrix characterizes those aspects of the performance of � that can be
preserved by an automatic controller despite activity at the adversarial input. In section 7, we show that the

C �
yuv

w
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perturbed model matching problem is solvable if and only if the skeleton matrix satisfies a certain numerical
inequality (compare to MURPHY, GENG, and HAMMER [2002 and 2003]).

The present paper deals with the control of asynchronous sequential machines utilizing the formalism of
MURPHY, GENG, and HAMMER [2002 and 2003], GENG and HAMMER [2004 and 2005], and
VENKATRAMAN and HAMMER [2006a, 2006b, and 2006c]. Of course, asynchronous sequential machines are a
topic within the general area of discrete mathematics. To a large extent, our terminology and notation follow
EILENBERG [1974]. Studies dealing with other aspects of the control of discrete event systems can be found in
RAMADGE and WONHAM [1987], HAMMER [1994, 1995, 1996a, 1996b, 1997], DIBENEDETTO,
SALDANHA, and SANGIOVANNI–VINCENTELLI [1994], THISTLE and WONHAM [1994], BARRETT and
LAFORTUNE [1998], the references cited in these papers, and others. It seems, however, that these publications do
not address issues that are peculiar to the function of asynchronous machines, such as the avoidance of critical races
and the distinction between stable states and transient states.

An important aspect of the operation of asynchronous sequential machines is fundamental mode operation (e.g.,
KOHAVI [1970]). Under fundamental mode operation, the input variables of an asynchronous machine are kept
constant while the machine undergoes state transitions. Fundamental mode operation comes to guarantee
deterministic behavior. Indeed, if an input value is changed while a machine undergoes state transitions, then the
state at which the input change occurs becomes unpredictable; this may result in an unpredictable outcome.

In the case of configuration (1.1), fundamental mode operation means that (i) the controller C must be in a
stable state while � undergoes transitions, and (ii) the machine � must be in a stable state while C undergoes
transitions. All systems considered in this paper are designed to operate in fundamental mode.

The paper is organized as follows. Section 2 reviews and expands the basic notation and framework of our
discussion. Section 3 introduces adversarial inputs and examines some of their potential effects. Two notions that
are critical to the solution of the adversarial model matching problem - the notions of reachability and detectability -
are discussed in section 4. Section 5 introduces a test that determines whether or not an adversarial action can be
counteracted. Necessary and sufficient conditions for the existence of a controller that solves the perturbed model
matching problem are derived in sections 6 and 7, while the structure of the controller is described in section 8. The
paper concludes in section 9 with a comprehensive example.

2. NOTATION AND BASICS

Let A be a finite non-empty alphabet, let A* be the set of all finite strings of characters of A, and let A+ be
the set of all non-empty strings in A*. To simplify our notation later, we assume that the alphabet A does not
include the digits 0 and 1. The length |w| of a string w � A* is the number of characters of w. For two strings
w1‚ w2 � A*, the concatenation is the string w := w1w2 obtained by appending w2 to the end of w1. A partial
function f : S1 � S2 is a function whose domain is a subset of S1.

Consider an asynchronous sequential machine with two inputs: a control input through which the machine is
operated and an adversarial input that attempts to interfere with the operation of the machine. We represent such a
machine by a sextuple � = ( )A�B‚Y‚X‚x0‚f‚h ‚ where A is the control input alphabet, B is the adversarial input
alphabet, Y is the output alphabet, X is a set of n states, and x0 is the initial state of the machine; f : X�A�B � X
(the recursion function) and h : X � Y (the output function) are partial functions. The machine � operates
recursively according to

(2.1)
xk+1 = f(xk‚uk‚wk)‚
yk = h(xk)‚ k = 0‚ 1‚ 2‚ ...

Here, u0‚ u1‚ u2‚ ... is the control input sequence, while w0, w1, w2, ... is the adversarial input sequence;
x0‚ x1‚ x2‚ ... is the sequence of the states through which the machine passes, and y0‚ y1‚ y2‚ ... is the sequence of
output values. The integer k represents the step counter; it advances by one upon any change of the machine's
inputs or state. Having selected the Moore representation for �, the output function h does not depend on the input
variables u and w (e.g., KOHAVI [1970]).
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(2.2) EXAMPLE. The following represents an asynchronous machine � with adversarial input. Here, the control
input alphabet is A = {a, b}; the adversarial input alphabet is B = {	, 
}; the state set is X = {x1, x2, x3}. We
assume here that the state of the machine is also its output, so that the output function h is the identity function. The
recursion function f of � is described by the following diagram:

(a,�)
(a,�)
(b,�)

(b,�)

x1

x2 x3

(a,�)
(a,�)

(a,�)

(b,�)
(b,�)

(b,�)

(a,�)

(b,�)

Alternatively, the transition function f can be characterized by the following transition table.

(a,�) (a,�) (b,�) (b,�)

x1 x1 x1 x1 x2

x2 x3 x1 x2 x2

x3 x3 x3 x1 x2

A triplet (x,u,w) is a valid combination of � if it is included in the domain of the function f. Occasionally, we
use a single character for the two inputs, as in �k = (uk,wk), k = 0, 1, 2, ... The input sequence �0, �1, �2, ... is
permissible if all pairs (x0,�0), (x1,�1), (x2,�2), ... are valid.

Consider an input string with repeated characters, say aaabbcccc. In compressed notation, the repetitions are
omitted, so our string becomes simply abc. This notation conforms to the way the string is applied in practice - the
first input character is kept constant for the first three steps, then the second character is kept constant for two steps,
and, finally, the last input character is kept constant for four steps.

The machine � is an input/state machine when its output is the state, namely, when Y = X and h(x) = x for
all x � X. Then, yk = xk for all k = 0‚ 1‚ 2‚ ..., and the machine is described by the recursion

(2.3) � : xk+1 = f(xk,uk,wk).

An input/state machine is represented by a quadruple � = ( )A�B‚X‚x0‚f . The present paper deals with the control of
asynchronous input/state machines.

A valid triplet (x,u,w) is a stable combination if x = f(x,u,w), namely, if the state x is a fixed point of the
recursion function f. An asynchronous machine lingers at a stable combination until a change occurs at one of its
inputs. A triplet (x,u,w) that is not a stable combination is a transient combination.

A transient triplet (x,u,w) initiates a chain of transitions x1 = f(x‚u,w)‚ x2 = f(x1‚u,w)‚ ..., where the input
characters u and w are kept fixed while the states change. This chain of transitions may or may not terminate. If it
terminates, then there is an integer q � 1 for which xq = f(xq,u,w), i.e., (xq,u,w) is a stable combination. Then, xq is
the next stable state of x with the input pair (u,w). If the chain of transitions does not terminate, then the triplet
(x,u,w) is part of an infinite cycle. In this paper, we restrict our attention to machines that have no infinite cycles.
Thus, in our case, every valid triple (x,u,w) has a next stable state. For future reference, it is convenient to record
this fact.

(2.4) LEMMA. In an asynchronous machine without infinite cycles, every valid combination has a next stable state.

�:

�
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When operating an asynchronous machine, one has to be careful to prevent situations where two or more
variables change value at the same time. A simultaneous change of two or more variables may cause an
asynchronous machine to become unpredictable (e.g., KOHAVI [1970]). Thus, it is common to enforce a policy
where only one variable is allowed to change value at any instant of time. When this policy is enforced, the machine
� operates in fundamental mode. In practice, almost all asynchronous machines are operated in fundamental mode.

The asynchronous machine � of (2.3) involves three variables: the state x and the input variables u and w.
In fundamental mode operation, not more than one of these variables can change value at any instant of time. This
leads to the following.

(2.5) DEFINITION. Let � = (A�B,X,f) be an asynchronous input/state machine with the two input variables u and
w. The machine � operates in fundamental mode if u and w change values only when � is in a stable
combination, and then at most one at a time. �

All the machines discussed in this paper operate in fundamental mode. Note that fundamental mode operation is
not an overly restrictive requirement. An asynchronous machine reaches its next stable combination very quickly -
ideally, in zero time; thus, it is rather unlikely that changes in u or in w will occur while � is in transition.
Similarly, the probability that the two independent variables u and w will change values simultaneously is zero,
since the two are not synchronized. Fundamental mode operation is most common in practice, and we adopt it as our
mode of operation.

Transitions from one stable combination of � to another are governed by its stable recursion function s, which
is defined as follows. For a valid triplet (x,u,w) of the machine �, let x	 be the next stable state; the stable
recursion function s : X�A�B � X is defined by the assignment s(x,u,w) := x	. As � has no infinite cycles, every
valid triplet has a next stable state, and hence s is defined on all valid triplets. The stable recursion function s
induces the stable state machine �|s of �, which is an asynchronous input/state machine given by (A�B‚X‚s). Here,
the stable recursion function s replaces the recursion function f of �.

Consider an input string � := �0�1...�m–1, where �i � A�B. Writing in terms of components, we have that �i =
(ui,wi), with ui � A and wi � B, i = 0, ..., m–1. Assume that � is in a stable combination at the initial state x0,
when the input string � is applied. In fundamental mode operation, the first input value �0 must remain fixed until
� reaches its next stable state x1 := s(x0‚�0) (ideally, this transition is completed in zero time). Anytime thereafter,
one of the input variables u or w can change, providing the next input pair �1. These input values remain fixed
until the next stable state x2 := s(s(x0‚�0)‚�1) is reached. This process continues until the last stable state xm :=
s(...s(s(s(x0‚�0)‚�1)‚�2)...‚�m–1) is reached. It is convenient to use the shorthand notation

(2.6) s(x0‚�) = s(...s(s(s(x0‚�0)‚�1)‚�2)...‚�m–1), � � (A�B)+.

When the machine � = (A�B,X,f) is connected in the closed loop configuration (1.1), the output of the
controller C serves as the control input of �. We therefore use A as the output alphabet of C. Also, the input
variable v of the controller C in the diagram is really intended to control the operation of �, so we use A as the
alphabet of v as well. In addition to v, the controller C accepts the state X of � as another input, so the input set
of C is A�X. Letting 
 be the state set, � the recursion function, and � the output function of the controller, we
can write C = (A�X,A,
,0,�,�), where 0 is the initial state of C.

In fundamental mode operation of the configuration (1.1), only one of the asynchronous machines � and C
can undergo transitions at any instant of time. Adapting GENG and HAMMER [2004 Proposition 1.4] to our present
case, we obtain the following.

(2.7) PROPOSITION. Let � = (A�B,X,f) and C = (A�X,A,
,0,�,�) be asynchronous machines interconnected in
the configuration (1.1). Then, the configuration operates in fundamental mode if and only if all the following hold:

(i) C is in a stable combination while � undergoes transitions, and � is in a stable combination while C
undergoes transitions.

(ii) The inputs u, w, and v change only while � and C are in a stable combination, and then only one at a time. �

In view of Proposition 2.7, the controller C must be designed so that it commences transitions only after
verifying that � has reached a stable combination. Similarly, C must adopt a stable combination immediately prior
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to inducing a change at the input of �. The controller C designed in section 8 below satisfies these requirements.
Fundamental mode operation assures that all transitions of the composite system are unambiguous and deterministic.

3. ADVERSARIAL INPUTS AND MODEL MATCHING

Our next objective is to discuss the implications of the adversarial input on the machine � = (A�B‚X‚x0‚f) of
(2.3). The critical issue is, of course, the fact that the adversarial input character wk is, in general, not specified. The
only a-priori information available about wk is that it belongs to a specified subset � � B called the adversarial
uncertainty. Adding the adversarial uncertainty � to the description of �, we obtain the quintuple
� = (A�B‚X‚x0‚f‚�).

When the adversarial uncertainty � includes more than one character, the precise value of the adversarial input
is not specified; this entails that the state of the machine � may not be known. Indeed, starting from the initial state
x0 and applying the initial control input value u0, the state of � after the first step can be any member of the set

f[x0�u0��] := Uw�� f(x0,u0,w) � X.

When this set contains more than one state, one cannot predict the precise state of � after the first step. In such case,
we are faced with the control of an asynchronous machine in the presence of uncertainty.

Recall that two asynchronous machines �1 and �2 are stably equivalent if the stable state machines �1|s and
�2|s are equivalent (see GENG and HAMMER [2004], [2005] for more details). Stably equivalent machines have
equivalent functionality and are identical from a user's point of view. We are now ready to formally formulate the
main topic of our discussion.

(3.1) THE PERTURBED MODEL MATCHING PROBLEM. Let � = (A�B,X,f,�) be an input/state asynchronous
machine with an adversarial input, and let �	 = (A,X,s	) be a stable-state input/state machine with no adversarial
input. Find necessary and sufficient conditions for the existence of a controller C for which the closed loop
machine �c(v,w) is stably equivalent to �	(v) for all w � � and all v � A. If such a controller exists, derive an
algorithm for its design. �

(3.2) EXAMPLE. A model machine �	. This input/state machine has the control input alphabet A={a, b} and the
state set X={x1,x2,x3}. It is a stable state machine with the stable transition function s	 given by the following
transition diagram; the model has no adversarial input.

a,b

b

x1

x2 x3

a
a

b

Alternatively, the stable transition function s	 of �	 can be described by the following table of transitions.

�	:

28



a b

x1 x1 x1

x2 x1 x2

x3 x3 x1

Now, let s be the stable recursion function of the asynchronous machine � = (A�B,X,f,�). Assume that � is
in a stable combination with the state x when the control input takes the value u. As � has no infinite cycles, it
follows by Lemma 2.4 that there is a next stable state x	 of �. The exact value of x	 is usually impossible to
predict, since the value w of the adversarial input is not known. All possible values of x	 are given by the set

(3.3) s�(x,u) := s[x,u,�] = {s(x,u,w) : w � �} � X.

Letting P(X) be the family of all subsets of the state set X of �, we thus obtain the function s� : X�A � P(X)
called the perturbed stable recursion function of �.

4. DETECTABILITY AND REACHABILITY

4.1. Detectability

As we have seen in Proposition 2.7, fundamental mode operation of the closed loop (1.1) requires the controller
C to remain in a stable combination until the machine � has reached its next stable state. Consequently, it must be
possible for C to determine whether or not � has reached its next stable state. We examine now the conditions
under which the latter is possible.

To this end, let � be the adversarial uncertainty of the machine �, and let w � � be the adversarial input
character. Assume that � is in a stable combination with the state x, when the control input variable takes the value
u. The machine � embarks then on a chain of state transitions given by

(4.1) �(x,u,w) := {x1 := f(x,u,w), x2 := f(x1,u,w), ..., xi(u,w) := f(xi(u,w)–1,u,w)},

where xi(u,w) is the stable state reached at the end. Clearly, the number of steps i(u,w) and the state xi(u,w) depend
on the adversarial input character w � �. According to (3.3), we must have xi(u,w) � s�(x,u). The set

(4.2) �[x,u,�] := {�(x,u,w) : w � �}

includes all state strings that form chains of transitions consistent with the adversarial uncertainty �, given that �
starts from the state x with the control input character u. The following statement shows that a string in �[x,u,�]
includes no repeating states.

(4.3) LEMMA. Let � = (A�B,X,f,�) be an asynchronous machine with no infinite cycles. Let x be a state of �
and let u be a control input value. Then, a string � � �[x,u,�] includes no repeating states.

Proof. Consider a string � = {x1, x2, ..., xi(u,w)} � �[x,u,�]. First, if i(u,w) = 1, then � includes only one state, and
clearly has no repeating states. Consider then the case where i(u,w) > 1. Assume, by contradiction, that xi = xj for
some integers 1 � i < j � i(u,w). Now, if j = i(u,w), then the triple (xi,u,w) = (xj,u,w) = (xi(u,w),u,w) is a stable
combination. If view of (4.1), this implies that � terminates at step i, so that i = j = i(u,w), a contradiction. Next,
consider the case where j < i(u,w). Using the recursion function of �, we get that xi+1 = f(xi,u,w) = f(xj,u,w) = xj+1,
xi+2 = f(xi+1,u,w) = f(xj+1,u,w) = xj+2, ..., which implies that the machine � has an infinite cycle xi, xi+1, xi+2, ..., xj,
xi+1, xi+2, ... contradicting our assumption. This concludes our proof. �

The following notion underlies the controller's ability to determine whether or not the controlled machine �
has reached its next stable state.

(4.4) DEFINITION. Let � = (A�B‚X‚f,�) be an input/state asynchronous machine, let x � X be a state of �, and

�
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let u � A be a control input character. Assume that � is in a stable combination with the state x, when the control
input character changes to u. Then, the pair (x,u) is detectable if it is possible to determine from the state of �
whether or not � has reached its next stable combination. �

The following is a test that allows us to ascertain whether a given pair (x,u) is detectable.

(4.5) THEOREM. Let � = (A�B‚X‚f) be an input/state asynchronous machine with an adversarial input, and let �
be the adversarial uncertainty. Let x � X be a state of �, let u � A be a control input character, and assume that
� is in a stable combination with the state x when the control input character changes to u. Then, in the notation of
(3.3) and (4.2), the following two statements are equivalent:

(i) The pair (x,u) is detectable.

(ii) States of the set s�(x,u) appear only at the end of strings belonging to �[x,u,�].

Proof. We use the notation of (4.1). Let w � � be the active adversarial input character, and let �(x,u,w) = {x0, x1,
x2, ..., xi(u,w)} be the string of transitions initiated when the control input character switches to u. Assume that there
is an integer 0 � j < i(u,w) for which xj � s�(x,u). Since j < i(u,w), it follows that (xj,u,w) is a transient
combination, as the chain of transitions continues after j. By the definition of the set s�(x,u), the inclusion xj �
s�(x,u) implies that there is an adversarial input character w	 � � such that the triple (xj,u,w	) is a stable
combination. Summarizing, the state xj forms a transient combination in the triple (xj,u,w) while forming a stable
combination in the triple (xj,u,w	). Consequently, when � is in the state xj, one cannot tell whether � is in a stable
combination or not. In other words, when (ii) is invalid, so is (i).

Conversely, assume that a state x	 � s�(x,u) can appear only at the end of a string belonging to �(x,u,�). Then,
by the definition of �(x,u,�), the machine � is in a stable combination if and only if it is in a state x	 � s�(x,u). In
other words, one can determine from the state of � whether or not it has reached its next stable combination, and
(x,u) is detectable. Thus, (ii) implies (i), and our proof concludes. �

Thus, for a detectable pair (x,u), a state feedback controller can determine whether or not � has reached its
next stable state simply by checking whether the current state of � is a member of s�(x,u). If it is, then � has
reached its next stable state; if it is not, then � has not yet reached its next stable state. For pairs that are not
detectable, it is not possible to determine from the current state whether � has reached its next stable combination.

(4.6) REMARK. Here, we assume that the state feedback controller provides information only about the current
state of the machine �, and does not keep track of the entire trajectory of states traversed by � on its way to the
current state. Controllers that keep track of the entire trajectory of � (i.e., controllers that record the "burst" of �)
have a more complex structure and will be discussed in a separate report. �

4.2. Reachability

We turn now to an examination of the reachability features of asynchronous machines with adversarial input.
First, we adapt to our present setting the following notion from MURPHY, GENG, and HAMMER [2002] and
[2003].

(4.7) DEFINITION. Let � = (A�B‚X‚f,�) be an input/state asynchronous machine with adversarial input, having
the state set X = {x1, x2, ..., xn}. Let s be the stable transition function of �, let u � A be a control input character,
and let w � B be an adversarial input character.

(i) The one-step sample control transition matrix �(�,w) of � is an n�n matrix whose (i,j) entry �ij(�,w)
consists of all control input characters u � A for which xj = s(xi,u,w); if there are no such control input characters,
then �ij(�,w) := N, where N is a character not in A or in B.

(ii) The one-step sample adversarial transition matrix �(�,u) of � is an n�n matrix whose (i,j) entry �ij(�,u)
consists of all adversarial input characters w � B for which xj = s(xi,u,w); if there are no such adversarial input
characters, then �ij(�,u) := N, where N is a character not in A or in B. �

More formally, we can write
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�ij(�,w) = !
"
#N if {u � A : xj = s(xi,u,w)} = �‚
{u � A : xj = s(xi,u,w)} otherwise‚

and

�ij(�,u) = !
"
#N if {w � � : xj = s(xi,u,w)} = �‚
{w � � : xj = s(xi,u,w)} otherwise‚

i, j = 1, ..., n.

In order to keep an explicit record of the adversarial input character, we introduce the one-step matrix of stable
transitions �(�,w), where we add the prefix w| to all entries of �(�,w), namely,

�ij(�,w) := {w|v : v � �ij(�,w)}, i, j = 1, 2, ..., n.

(4.8) EXAMPLE. Consider the machine � of Example 2.2. The one-step matrices of stable transitions of � are

�(�,�) =
�
$
$
�

%
&
&
'{�|a,�|b} {�|N} {�|N}

{�|N} {�|b} {�|a}

{�|b} {�|N} {�|a}

, �(�,�) =
�
$
$
�

%
&
&
'{�|a} {�|b} {�|N}

{�|a} {�|b} {�|N}

{�|N} {�|b} {�|a}

�

To work with the entries of �(�,w), we define the projections �a : B|(A+
U N) � B (projection onto the

adversarial input value) and �c : B|(A+
U N) � (A+

U N) (projection onto the control input value) by setting

�a w|u := !
"
#w if u � N‚
� else‚

and
�c w|u := u for all w|u � B|(A+

U N).

Next, given two sets of strings s1, s2 � B|(A+
U N), we define an operation s1 � s2 that is akin to the union of

the two sets, with N being handled like the empty set it represents. Specifically, we delete from the union all
elements w|N for which w also appears with a nonempty control input string. Using \ to denote the difference set,
we have

s1 � s2 := [s1 U s2] \ sN,

where sN consists of all elements w|N � s1 U s2 for which [w|A+] I [s1 U s2] � �.

Recall that concatenation is an operation that combines two strings into one longer string. When dealing with
pairs of strings of the form w|u � B|(A+

U N), concatenation operates only on strings with the same adversarial
input character, concatenating the control inputs and leaving the adversarial input character unchanged. Explicitly,
given two strings w1|u1, w2|u2 � B|(A+

U N), set

conc(w1|u1,w2|u2) := !
"
#w1|u1u2 if w1 = w2 and both u1‚ u2 � N‚
w1|N‚ w2|N otherwise.

For two subsets of strings �1, �2 � B|(A+
U N), the concatenation is defined by

conc(�1,�2) := �s1��1‚s2��2
conc(s1,s2).

Further, we define an operation that resembles matrix multiplication. Let P and Q be two n�n matrices with
entries in the set B|(A+

U N). The combination PQ is an n�n matrix with the entries

(PQ)ij := �k=1,...,n conc(Pik,Qkj), i, j = 1, 2, ..., n.

Using this operation, we raise the one step matrix of stable transitions to the power of k, to get the matrix

�k(�,w) = �k–1(�,w)�(�,w), k = 1, 2, ...

By construction, the i, j entry of �k(�,w) consists of all strings of the form w|u that take the machine � from a
stable combination with the state xi to a stable combination with the state xj in exactly k steps; if no such
transition is possible, then u = N.
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(4.9) EXAMPLE. Continuing from Example 4.8, we obtain (omitting repeated characters):

�4(�,�) =
�
$
�

%
&
'{ }�|a,�|aba,�|baba,�|ba,�|abab,�|ab,�|bab,�|b {�|N} {�|N}

{ }�|aba,�|baba,�|abab,�|bab,�|ab {�|b} {�|ba,�|a}

{ }�|baba,�|ba,�|aba,�|abab,�|bab,�|b,�|ab {�|N} {�|a}

�4(�,�) =
�
$
�

%
&
'{ }�|a,�|baba,�|aba,�|ba { }�|abab,�|bab,�|ab,�|b {�|N}

{ }�|a,�|baba,�|aba,�|ba { }�|abab,�|bab,�|ab,�|b {�|N}

{ }�|baba,�|ba,�|aba { }�|abab,�|bab,�|b,�|ab,�|a {�|a}

�

The matrix

(4.10) R(m,�,w) := �i=1,...,m �i(�,w)

is the matrix of m stable transitions of �. It characterizes all the transitions of � that can be accomplished in m
or fewer stable steps. When we allow m to grow indefinitely, we obtain the extended matrix of stable transitions

R*(�,w) := �i � 1 �
i(�,w),

which characterizes all stable transitions of the machine �.

Using the fact that � has only n states, an argument similar to the one employed in MURPHY, GENG, and
HAMMER [2003, Proposition 3.9], yields the following.

(4.11) LEMMA. Let � = (A�B,X,f) be an asynchronous machine with n states and an adversarial input. Let w be
an adversarial input character of �, and let R(m,�,w) be the matrix of m stable transitions of �. Then, the
following two statements are equivalent for all integers m � n–1 and all i, j = 1, 2, ..., n.

(i) The entry Rij(m,�,w) includes a string w|u with u � N.

(ii) The entry R*
ij (�,w) includes a string w|u with u � N. �

In brief terms, Lemma 4.11 indicates that all stable transitions of the machine � with the adversarial input
character w are characterized by the matrix R(m,�,w), as long as m � n–1.

Of course, the adversarial input character is usually not known. To accommodate this fact, we introduce the
following notion.

(4.12) DEFINITION. Let � be an asynchronous machine with the adversarial input uncertainty �. The one-step
stable transitions matrix �(�,�) of � consists of the entries

�ij(�,�) := �w�� �ij(�,w), i, j = 1, 2, ..., n. �

The matrix �(�,�) simply includes all one-step stable transitions that are compatible the adversarial uncertainty
of �.

4.3. State Feedback

Recall that our objective is to build a state feedback controller C that turns the closed loop machine �c of
diagram (1.1) into a deterministic machine not affected by the adversarial input. The following notion forms the
basis of our forthcoming discussion (compare to VENKATRAMAN and HAMMER [2006b and c]).

(4.13) DEFINITION. Let � = (A�B,X,f,�) be an asynchronous machine with an adversarial input, and let xi, xj �
X be two states of �. We say that there is a feedback path from xi to xj if there is a state feedback controller that
takes � from a stable combination with xi to a stable combination with xj in fundamental mode, given only that
the adversarial input is within the uncertainty set �. �

In these terms, our objective is to find pairs of states of the machine � that can be connected by a feedback
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path. Note that, due to fundamental mode operation, the adversarial input character does not change along a
feedback path, but its value is not, in general, known. The following is a simple property of feedback paths.

(4.14) LEMMA. Let � = (A�B,X,f) be an asynchronous machine with the matrix of stable transitions R(m,�,�).
Let xi, xj � X be two states of �, and assume that there is a feedback path from xi to xj. If w is a possible
adversarial input value along this path, then w � �aRij(m,�,�) for some m � 1.

Proof. Assume that there is a feedback path from xi to xj for the adversarial input value w. Then, there is a control
input string that takes � from xi to xj through a string of stable transitions, while the adversarial input character is
w. In view of Lemma 4.11, this implies that there is a control input string u � A+ such that w|u � Rij(m,�,�) for
some m � 1. Consequently, w � �aRij(m,�,�), and our proof concludes. �

Lemma (4.14) provides a simple necessary condition for the existence of a feedback path. We derive a
sufficient condition for the existence of feedback paths in the next section.

5. COMPLETE SETS OF STRINGS

Let � = (A�B,X,f,�) be an asynchronous machine with an adversarial input, and let xi and xj be two states of
�. In this section, we develop a test to determine whether there is a feedback path from xi to xj. Critical to this
development is the uncertainty about the adversarial input value. This uncertainty may vary along a feedback path
due to the fact that the controller accumulates more information about the adversarial input value.

As an example, assume that � consists of two characters, say � = {w1, w2}. Then, initially, it is known only
that the adversarial input value is one of the characters w1 or w2. Now, assume that the control input value is
changed to the character u	. Letting s be the stable recursion function of �, we have two options for the next stable
state:

(i) x	 := s(x,u	,w1) when the adversarial input character is w1; and

(ii) x�:= s(x,u	,w2) when the adversarial input character is w2.

Clearly, if x	 � x�, then we can determine the value of the adversarial input character from the next stable state, thus
resolving the uncertainty. On the other hand, if x	 = x�, then the outcome of this step does not reduce the uncertainty
about the adversarial input.

In summary, the uncertainty about the adversarial input value may be reduced as we progress along a feedback
path. Of course, only the uncertainty changes - the adversarial input value itself is constant along a feedback path in
fundamental mode operation.

The adversarial uncertainty affects the selection of the next control input character, as we now discuss. Consider
the case where the machine � is at a stable combination with the state x and the control input value u0, while
being driven along a feedback path toward a stable combination with the state x	. Let �0 � � be the current
uncertainty about the value of the adversarial input, and let A be the control input alphabet. Let S be the set of all
strings that take � from its current state x to a stable combination with the state x	, i.e., all strings w|u = w|u0u1 ...
� �0|A+ for which s(x,u,w) = x	. Letting u1 be the next control input character, denote by S(a) the subset of all
strings of S for which u1 = a, where a � A is a character of the control input alphabet. Then, the set of adversarial
input characters that are compatible with the control input character a at step 1 is given by �a S(a).

Now, if �0 � �a S(a), then the character a cannot be used as the control input at step 1, since it is not
compatible with some adversarial input values that may presently be active. On the other hand, if �0 � �a S(a), then
a can be applied as the next control input character, since it is compatible with the information currently available
about the adversarial input value. To conclude, the current level of adversarial uncertainty �0 impacts the selection
of the next control input character.

For a member � = w|u0u1...uk of S and an integer q � 0, it is convenient to define the truncated string
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�|q := !
"
#w|u0u1...uq if q � k‚
w|u0u1...uk if q > k.

The set of all truncated members of S is denoted by

S|q := {�|q : � � S}, q = 1, 2, ...

Recall that S includes all strings that take � from a stable combination with the state x to a stable
combination with the state x	. Then, the string �|q takes � to a stable combination with the state

xq := s(x,�|q) := s(x,u0u1...uq,w), q = 1, 2, ...

The stable states that � passes while being driven by the string � are given by the list

x0(�) := s(x,�|0), x1(�) := s(x,�|1), ..., xk(�) := s(x,�|k),

where x0(�) = x and xk(�) = x	.

For a string � = w|u0u1...uk � S, we define the projection �p : S � A which extracts the p-th control input
character of �, i.e.,

�p � := !
"
#up for p = 0‚ 1‚ ...‚ k‚
uk for all p > k.

Next, assume that the machine � is operated by a state feedback controller C that uses strings from the set S
to drive �, while the adversarial input value w is kept constant. As usual, there is no direct information about the
value of w. However, the control input values of � and the states through which � passes are known to the
controller, as the controller generates the input values and reads the states of �. This data can be used to reduce the
uncertainty about the adversarial input value w, as follows.

Let x and x	 be two states of �, let u be a control input string of �, and let s be the stable recursion
function of �. Assume that � is in a stable combination with the state x when the control input value changes to
u, and let x� be the next stable state of �. Define the adversarial inverse function sa by setting

(5.1) sa(x,u,x�) := {w � B : s(x,u,w) = x�},

so that sa(x,u,x�) is the set of all adversarial input values w � � that are compatible with the stable transition
s(x,u,w) = x�. In particular, when � is at a stable combination with the initial state x0 and the control input value
u0, it follows from (5.1) that the adversarial input character w must satisfy

(5.2) w � �(x0,u0) := sa(x0,u0,x0) I �.

Thus, the initial uncertainty about the adversarial input value may, in fact, be smaller than �.

Recall that S is the set of all strings that take � from a stable combination with the state x0 := x to a stable
combination with the state x	. At the initial step, the set of all possible adversarial input values is given by (5.2).
Consequently, the set S must contain a path for each adversarial input character w � �(x0,u0), namely, we must
have �(x0,u0) � �a S. Otherwise, the set S would be incompatible with some of the potential adversarial input
values.

Further, let u1 be a control input character, and let S(x0,u0u1) be the set of all strings of S whose control input
starts with u0u1, i.e.,

S(x0,u0u1) = {� � S : �|1 = w|u0u1 for some w � B}.

Clearly, the character u1 can be used as the next control input only if it is compatible with all possible adversarial
input values, i.e., only if

�(x0,u0) � �a S(x0,u0u1).

As the control input string is generated by the controller C, the pair (x0,u1) must be detectable to facilitate
fundamental mode operation of the closed loop machine.

Now, let x1 be the next stable state of � reached with the control input character u1. The fact that � has
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reached the state x1 implies that the adversarial input value w must have been within the set

�(x0x1,u0u1) := sa(x0,u1,x1) I �(x0,u0).

Continuing in this way, suppose that we are at step p of the path. Let u0u1...up be the control input characters
applied so far to � along this path by the controller, and let x0x1...xp be the string of stable states through which �
has passed as a result. Let �(x0x1...xp,u0u1...up) � B be the current uncertainty about the adversarial input value. By
iterating the earlier step, we obtain the following conclusion.

(5.3) LEMMA. Let w be the adversarial input character of the asynchronous machine � and let p � 1 be an
integer. Assume that the control input string u0u1...up � A+ drives � through the states x0x1...xp, where (xi,ui,w), i
= 0, 1, 2, ..., p, are all stable combinations. Then, w � �(x0x1...xp,u0u1...up), where

�(x0x1...xp,u0u1...up) := sa(xp–1,up,xp) I �(x0x1...xp–1,u0u1...up–1). �

Referring to Lemma (5.3), it follows from (5.2) that �(x0x1...xp,u0u1...up) � �. We call �(x0x1...xp,u0u1...up) the
residual adversarial uncertainty at step p.

Let us return now to our set of strings S that take the machine � from the state x0 := x to the state x	. Denote
by S(x0x1...xp,u0u1...up) the set of all elements � � S that satisfy the following conditions:

(i) The control input values are u0u1...up; and

(ii) The machine � passes through the states x0, x1, ...,xp.

For a control input character d � A, denote by S(x0x1...xp,u0u1...upd) the set of all strings � � S(x0x1...xp,u0u1...up)
that have the character d in position p+1 of their control input string. Applying Lemma 5.3 to step p of the
machine �, it follows that the adversarial input value must be within the set �(x0x1...xp,u0u1...up). Also, the set of all
adversarial input characters that appear with the next control input character d is �a S(x0x1...xp,u0u1...upd).
Combining the last two facts, we obtain the following.

(5.4) LEMMA. The character d � A can be used as the next control input character of the machine � only if
�(x0x1...xp,u0u1...up) � �a S(x0x1...xp,u0u1...upd). �

The condition of Lemma 5.4 is critical to the construction of a feedback controller that automatically takes a
machine � with an adversarial input from one specified state to another. In fact, we show later that this condition
guaranties the existence of such a controller, if it is valid at every stable transition along the way from x0 to x	.
These considerations lead us to the following.

(5.5) DEFINITION. Let S � B|A+ be a set of strings taking the asynchronous machine � from a stable
combination with the state x0 to a stable combination with the state x	. The set S is complete if the following two
conditions hold for all integers p = 0, 1, 2, ... and for every control input character d � �p+1 S(x0x1...xp,u0u1...up):
(i) �(x0x1...xp,u0u1...up) � �a S(x0x1...xp,u0u1...upd), and
(ii) The pair (xp,d) is detectable with respect to the residual adversarial uncertainty �(x0x1...xp,u0u1...up). �

Our next objective is to show that the existence of a complete set of strings is equivalent to the existence of a
state feedback controller. Shortly thereafter, we present an algorithm for the derivation of complete sets of strings.
First, we show that a complete set of strings can be replaced by a complete set of strings of bounded length. For a set
of strings S � B|A+, denote by |S| the maximal length of a control input string in S, i.e., the maximal length of a
string of the set �cS. For a finite set Z, denote by #Z the number of elements of Z.

(5.6) LEMMA. Let � = (A�B,X,f,�) be an asynchronous machine with n states, and let x0 and x	 be two states
of �. Assume that � is in a stable combination at the state x0 with the control input value u0. If there is a
complete set of strings from x0 to x	, then there also is such a complete set of strings S satisfying |S| �
[#�(x0,u0)](n – 1).

Proof. Consider a string � � S. Let u = u0u1...uk = �c� be the control input values of this string and let x0x1...xk be
the string of stable states through which � passes as a result of receiving the control input string u. The residual
adversarial uncertainty at the start of the path is �0 := �(x0,u0). Let �i be the residual uncertainty at step i of the
path, and note that, by definition, �i is a monotone declining function of i, and its minimal value cannot be less than
1. Divide the interval [0, k] into segments of constant residual uncertainty. This results in the set of m+1
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subintervals I = {[0, i1], [i1+1, i2], ..., [im+1, k]}, where �i is constant over each one of these intervals. Since �i is a
monotone declining function and its minimum cannot be less than 1, we get m + 1 � #�(x0,u0), or m � #�(x0,u0) – 1.

Now, if any of the subintervals [i, i	] � I has length l � n, then the string of states xixi+1...xi	 must contain a
repeating state, say x := xp = xr, where i � p < r � i+l. Since �p = �r by construction, the control input value up can
be replaced by the control value ur without disturbing the stable combination at step p (recall that the adversarial
input value is constant during the entire path). Then, steps p+1, p+2, ..., r can be eliminated from the string,
resulting in a new segment with the length of l – (r – p). This process can be repeated again and again, until the
length of the resulting segment is less than n. Applying the same procedure to each one of the segments in I, we
obtain a new path of length not exceeding (m+1)(n–1) � [#�(x0,u0)](n – 1). As this bound is valid for every segment
in I, our proof concludes. �

We have reached the main result of this section.

(5.7) THEOREM. Let � = (A�B,X,f,�) be an asynchronous machine and let x and x	 be two states of �. Then,
the following two statements are equivalent.

(i) There is a state feedback controller C that drives � from a stable combination with x to a stable combination
with x	 in fundamental mode operation.

(ii) There is a complete set of strings S � B|A+ taking � from a stable combination with x to a stable combination
with x	.

Proof. Assume first that (ii) is valid. We build a state feedback controller F(x,x	,v) which, upon receiving the input
character v � A, generates a string of control input characters that takes � from a stable combination with x0 := x
to a stable combination with x	 in fundamental mode operation. To this end, assume that � is in a stable
combination with the state x0, and pick a control input character u1 � �1 S. Due to the fact that S is a complete set
of strings, the pair (x0,u1) is detectable with respect to the adversarial uncertainty �(x0,u0). In addition, �(x0,u0) �
�a S(x0,u0u1), so that the input character u1 is compatible with every possible adversarial input value.

Now, let 
 be the state set of the controller F(x,x	,v). The recursion function � of F(x,x	,v) has three
variables: the state of F(x,x	,v), the state of �, and the external control input, i.e., � : 
�X�A � 
. Denote by � :

�X�A � A the output function of F(x,x	,v), and let 0 be the initial state of F(x,x	,v). We construct next the
functions � and �.

Upon encountering a detectable transition of � to the state x0 with the control input value u0, the controller
moves to a stable combination with the state 1. This transition prepares the controller to generate the input string
that will take � to the state x	, when commanded to do so; it is accomplished by setting

�(0,(z,t)) := 0 for all (z,t) � (x0,u0),
�(0,(x0,u0)) := 1,
�(1,(x0,u0)) := 1.

While in its initial state 0 or in the state 1, the controller applies to the control input of � the external input
character it receives, namely

�(0,(z,t)) := t for all (z,t) � X�A,
�(1,(z,t)) := t for all (z,t) � X�A,

so that F(x,x	,v) is transparent in these states.

Suppose now that, while F(x,x	,v) is in the state 1, it receives the external input character v � A. This is the
command for the controller to start a string of transitions taking � from its current stable combination with the state
x0 to a stable combination with the state x	. Upon receiving the external input value v, the controller F(x,x	,v)
moves to a stable combination with the state 2, namely,

�(1,(z,t)) := 1 for all (z,t) � (x0,v),
�(1,(x0,v)) := 2,
�(2,(x0,v)) := 2.
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When reaching the state 2, the controller applies to the control input of � the first character of the control input
string u1u2...uk � �c S that ultimately takes � to the state x	; to this end, set

�(2,(x0,t)) := u1 for all t � A.

The control input character u1 causes � to move to the state x1 through a detectable transition, since S was a
complete set of strings. For the same reason, u1 is compatible with every adversarial input character in the residual
adversarial uncertainty �(x0,u0). As the transition was detectable, � is in a stable combination when it reaches the
state x1. When the controller detects the state x1 of �, it moves to a stable combination with the state 3, namely,

�(2,(z,t)) := 2 for all (z,t) � (x1,u1),
�(2,(x1,v)) := 3,
�(3,(x1,v)) := 3.

When reaching the state 3, the controller applies to � the next control input value u2. Since S is a complete set
of strings, the pair (x1,u2) is detectable for the current adversarial uncertainty �(x0x1,u0u1). Also, �(x0x1,u0u1) � �a
S(x0x1,u0u1u2), so that u2 is compatible with every possible adversarial input value. We then build the controller
output function accordingly:

�(3,(x1,t)) := u2 for all t � A.

Continuing in this manner, assume that the controller F(x,x	,v) has so far generated the control input string
u0u1...up, taking � through the states x0x1...xp; here, p is an integer between 1 and k. Since S was a complete set
of strings, the transition to the state xp was a detectable transition; consequently, � is in a stable combination when
it reaches the state xp. Upon detecting the state xp, the controller F(x,x	,v) moves to a stable combination with the
state p+2, namely,

�(p+1,(z,t)) := p+1 for all (z,t) � (xp,up),
�(p+1,(xp,v)) := p+2,
�(p+2,(xp,v)) := p+2.

Now, select any control input value up+1 � �p+1 S(x0x1...xp,u0u1...up). Due to the fact that S is a complete set of
strings, the pair (xp,up+1) is detectable with respect to the adversarial uncertainty �(x0x1...xp,u0u1...up). Also,
�(x0x1...xp,u0u1...up) � �a S(x0x1...xp,u0u1...upup+1), so that the input character up+1 is compatible with any
adversarial character in �(x0x1...xp,u0u1...up). Upon reaching the state p+2, the controller applies to � the control
input character up+1, namely,

�(p+2,(xp,t)) := up+1 for all t � A.

This construction is repeated for p = 1, 2, ..., until the machine � reaches the state x	. In view of our
construction, the resulting controller F(x,x	,v) satisfies condition (i) of the Theorem. Note that, by Lemma 5.6, the
state x	 can always be reached at a step k � (n – 1)[#�(x0,u0)], where n is the number of states of the machine �.

Conversely, assume that condition (i) is valid. Let F(x,x	,v) be a controller which, upon receiving the input
character v � A, takes � from a stable combination with the state x0 := x to a stable combination with the state x	.
Assume that � is in a stable combination with the state x0 and the control input value u0, when the controller
input changes to the character v. The initial uncertainty about the adversarial input character of � is then �(x0,u0).
Let S � B|A+ be the set of strings the controller F(x,x	,v) can generate; the specific string used by F(x,x	,v) in
each case depends on the information it extracts about the adversarial input value. To prove that (i) implies (ii), we
need to show that S is a complete set of strings. Recall that, due to fundamental mode operation, the adversarial
input character w, although possibly unknown, remains constant until � reaches the stable state x	.

To show that S is a complete set of strings, consider step p � 0 of a string of control input characters u0u1...up
applied by F(x,x	,v) to �. Denote by x0x1...xp the stable states through which � has passed as a result of this
string; here, xp is the current stable state of �. By Lemma 5.3, the residual adversarial uncertainty at this point is
�(x0x1...xp,u0u1...up). Let d � A be the next control input character that F generates for �. Then, by fundamental
mode operation of the closed loop machine, the pair (xp,d) is detectable with respect to the residual uncertainty
�(x0x1...xp,u0u1...up). Also, in view of Lemma 5.4, we have �(x0x1...xp,u0u1...up) � �a S(x0x1...xp,u0u1...upd). As this
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is true for all p � 0, the requirements of Definition 5.5 are met, and S is a complete set of strings. Thus, (i) implies
(ii), and our proof concludes. �

In view of Theorem 5.7, finding a complete set of strings is the critical step in the process of designing a
controller for an asynchronous machine with adversarial input. The following algorithm derives such a set of strings.

(5.8) ALGORITHM. Derivation of a complete set of strings. Let � = (A�B,X,f,�) be an asynchronous machine
with adversarial input. Let S � B|A+ be a set of strings that take � from a stable combination with the state x0
and the control input value u0 to a stable combination with the state x	. Consider the case where � is at step j of
an input string from S, having received the control inputs u0u1...uj and having passed through the stable states
x0x1...xj. The residual adversarial uncertainty is �(x0x1...xj,u0u1...uj).

Step 0. Set j := 0.

Step 1. If �(x0x1...xj,u0u1...uj) � �a S(x0x1...xj,u0u1...uj), then S does not include a complete set of strings. Set � :=
� and terminate the algorithm. Otherwise, continue to Step 2.

Step 2. Let S1 be the set of all strings � � S(x0x1...xj,u0u1...uj) for which �a � � �(x0x1...xj,u0u1...uj). If S1 � �,
then replace S by the difference set S \ S1 and go to Step 0. If S1 = �, continue to Step 3.

Step 3: Let S2 be the set of all strings � � S(x0x1...xj,u0u1...uj) for which the pair (xj,�j+1 �) is not detectable with
respect to the residual uncertainty �(x0x1...xj,u0u1...uj). If S2 � �, then replace S by the difference set S \ S2 and
go to Step 0. If S2 = �, continue to Step 4.

Step 4. Let S3 be the set of all strings � � S(x0x1...xj,u0u1...uj) for which �(x0x1...xj,u0u1...uj) � �a
S(x0x1...xj,u0u1...uj�

j+1 �). If S3 � �, then replace S by the difference set S \ S3 and go to Step 0. If S3 = �,
continue to Step 5.

Step 5. Let q be the length of the longest string in S. If j = q, then set � := S and terminate the algorithm.
Otherwise, replace j by j+1 and go to Step 1. �

The outcome of the Algorithm 5.8 is a set of strings � � B|A+. If � is not the empty set, then, according to the
next statement, it forms a complete set of strings.

(5.9) THEOREM. Let � = (A�B,X,f,�) be an asynchronous machine with adversarial input, let S � B|A+ be a set
of strings all having the same initial control input character, and let � be the outcome of Algorithm 5.8. Then,

(i) � is not empty if and only if S contains a complete set of strings, and

(ii) If � is not empty, then it forms a complete set of strings included in S.

Proof. Assume that � is not empty. Then, an examination of Step 3 of Algorithm 5.8 shows that � satisfies
condition (i) of Definition 5.5, while an examination of Step 4 of the Algorithm shows that � satisfies condition (ii)
of Definition 5.5. A slight reflection on the flow of Algorithm 5.8 leads then to the conclusion that � is a subset of
S, and that it is not empty if and only if S contains a complete set of strings. �

6. SKELETON MATRICES

We turn now to the definition of one of the main notions of our present discussion. Let � = (A�B,X,f,�) be an
input/state asynchronous sequential machine with adversarial input, having the state set X = {x1, ..., xn} with n
states. In view of (5.2), the initial adversarial uncertainty always satisfies �(x0,u0) � �, so we always have #�(x0,u0)
� #�. Invoking Lemma 5.6, we conclude that a complete set of strings S for the machine � can always be selected
so that its length satisfies

(6.1) |S| � (n – 1)(#�).

Recall that, by (4.10), the i, j entry of the matrix R(m,�,w) includes all the control input strings that take �
from a stable combination with the state xi to a stable combination with the state xj through a string of m or
fewer stable transitions, while the adversarial input character is w. At this point, it is convenient to introduce the
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matrix

(6.2) R(�,�) := �w�� R((n–1)(#�),�,w).

(6.3) DEFINITION. The matrix R(�,�) is the combined matrix of stable transitions of the asynchronous machine �
with the adversarial uncertainty �. �

(6.4) EXAMPLE. Continuing with our analysis of the machine � of Example 2.2, we let the adversarial uncertainty
be � = {�, �}, so that #� = 2. As we have three states in this case, n= 3, and (n 1)(#� ) = 4.

R(�,�) = �(�,�) � �(�,�) � �2(�,�) � �2(�,�) � �3(�,�) � �3(�,�) � �4(�,�) � �4(�,�) =

�
$
$
�

%
&
&
'{ }�|a,�|aba,�|baba,�|ba,�|abab,�|ab,�|bab,�|b,�|a,�|baba,�|aba,�|ba { }�|abab,�|bab,�|ab,�|b { }�|N,�|N

{ }�|baba,�|aba,�|abab,�|bab,�|ab,�|a,�|baba,�|aba,�|ba { }�|b,�|abab,�|bab,�|ab,�|b { }�|ba,�|a
{ }�|baba,�|ba,�|aba,�|abab,�|bab,�|b,�|ab,�|baba,�|ba,�|aba { }�|abab,�|bab,�|b,�|ab,�|a { }�|a,�|a

�

Considering (6.1), Lemma 5.6, and Theorem 5.7, we reach the following conclusion.

(6.5) CORROLARY. Let � = (A�B,X,f,�) be an asynchronous machine with adversarial input, having the state set
X = {x1, ..., xn} and the combined matrix of stable transitions R(�,�). Then, the following two statements are
equivalent for all i, j = 1, 2, ..., n.

(i) There is a state feedback controller that takes � from a stable combination with xi to a stable combination with
xj in fundamental mode operation.

(ii) The i, j entry of R(�,�) includes a complete set of strings. �

In view of Corollary 6.5, it is easy to determine whether or not there is a state feedback controller that takes the
machine � from a stable combination with the state xi to a stable combination with the state xj in fundamental
mode operation: all we have to do is apply Algorithm 5.8 to the entry Rij(�,�). Then, such a controller exists if and
only if the outcome of Algorithm 5.8 is a non empty set. This set can then be used to construct an appropriate
controller by following the proof of Theorem 5.7. In this way, we arrive at the following notion.

(6.6) DEFINITION. Let � = (A�B,X,f,�) be an asynchronous machine with adversarial input, having n states and
the combined matrix of stable transitions R(�,�). The complete matrix of stable transitions ((�,�) of � is an n�n
matrix defined as follows for each i, j � {1, 2, ..., n}: the entry (ij(�,�) is a complete set of strings included in the
entry Rij(�,�); if there is no such complete set, then (ij(�,�) := N. �

(6.7) EXAMPLE. Applying Algorithm 5.8 on the entries of the matrix of stable transitions derived in Example 6.4,
we obtain

((�,�) =
�
$
�

%
&
'{ }�|a,�|a N N

{ }�|ab,�|a,�|ba { }�|b,�|ab,�|b N

{ }�|ab,�|ba,�|b,�|ba N { }�|a,�|a

�

In view of Theorem 5.7, the following is true.

(6.8) COROLLARY. Let � be an asynchronous sequential machine with the state set {x1, ..., xn} and the
adversarial uncertainty �. Let ((�,�) be the complete matrix of stable transitions of �. Then, the following two
statements are equivalent for all i, j � {1, ..., n}:

(i) There is a state feedback controller that takes � from a stable combination with the state xi to a stable
combination with the state xj in fundamental mode operation.

(ii) (ij(�,�) � N. �

We can now generalize the notion of the skeleton matrix (MURPHY, GENG, and HAMMER [2002 and 2003])
to asynchronous machines with adversarial inputs.

(6.9) DEFINITION. Let � = (A�B,X,f,�) be an input/state asynchronous sequential machine with adversarial input,
having the state set X = {x1, ..., xn} and the complete matrix of stable transitions ((�,�). The control skeleton
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matrix K(�,�) of � is an n�n matrix of zeros and ones, whose entries are defined as follows for each i, j � {1,
2, ..., n}: Kij(��) := 1 if (ij(�,�) � N, and Kij := 0 if (ij(�,�) = N. �

(6.10) EXAMPLE. Using the result of Example 6.7, we obtain the control skeleton matrix

K(�,�) = �
$
�

%
&
'1 0 0

1 1 0
1 0 1

�

In these terms, a state feedback controller can take � from a stable combination with the state xi to a stable
combination with the state xj in fundamental mode operation if and only if Kij(�,�) = 1.

6.1. Latent Adversarial Switches.

We turn our attention now to a restricted version of the model matching problem with adversarial inputs. The
solution of this problem forms a step stone along our way toward the solution of the full model matching problem
with adversarial inputs.

Consider an asynchronous machine � with adversarial input uncertainty �. Note that changes in the
adversarial input value do not always cause a state transition of �. Indeed, assume that � is at a stable combination
with the state x and the control input character u0, and consider the set of adversarial input characters sa(x,u0,x) of
(5.1). Clearly, if this set consists of more than one character, then a switch of the adversarial input from one
character to another in this set does not change the stable state of �, and hence is not noticeable by a state feedback
controller. This leads to the following.

(6.11) DEFINITION. A latent adversarial switch is a change of the adversarial input value that does not result in a
change of the stable state of the machine. �

The next statement provides a solution of the model matching problem for the case when all adversarial input
changes are latent.

(6.12) THEOREM. Let � = (A�B,X,f,�) be an input/state machine with adversarial input, and assume that the
adversarial input is restricted to latent switches. Let K(�,�) be the control skeleton matrix of �, and let �	 =
(A,X,s	) be a stable-state input/state machine with no adversarial input, having the skeleton matrix K(�	). Then, the
following two statements are equivalent.
(i) There exists a state feedback controller C for which �c|s = �	, where the closed loop machine �c is well posed
and operates in fundamental mode.
(ii) K(�,�) � K(�	).

(6.13) EXAMPLE. Consider the problem of building a model matching controller for the machine � of Example
2.2 so as to match the model �	 of Example 3.2. Using the procedure described in MURPHY, GENG, and
HAMMER [2002 and 2003], the skeleton matrix of the model �	 is calculated as

K(�	) =
�
$
�

%
&
'1 0 0

1 1 0
1 0 1

.

The control skeleton matrix K(�,�) was calculated in Example 6.10. Comparing the two matrices, we obtain that
K(�,�) � K(�	), so that a model matching controller exists by Theorem 6.12. We will construct the controller in
section 9 below. �

Proof (of Theorem 6.12). Assume first that (i) is valid, and consider a particular stable transition of the model �	,
say a transition from a stable combination with the state xi to a stable combination with the state xj. Then, by
definition of the skeleton matrix, Kij(�	) = 1. As (i) is valid, the stable state machine �c|s must also have a transition
from a stable combination with the state xi to a stable combination with xj. In view of the fact that �c is the
machine � controlled by the controller C, it follows by Corollary 6.8 and Definition 6.9 that Kij(�,�) = 1 as well.
Thus, Kij(�,�) = 1 if Kij(�	) = 1, i, j = 1, 2, ..., n. Considering that K(�,�) and K(�	) are both matrices of zeros
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and ones, the latter implies that K(�,�) � K(�	), and (i) implies (ii).

Conversely, assume that (ii) is valid. Let K1(�	) be the one-step skeleton matrix of the model �	 (see
MURPHY, GENG, and HAMMER [2003]). Then, K(�	) � K1(�	), and it follows by (ii) that

(6.14) K(�,�) � K1(�	).

Now, let i, j � {1, 2, ..., n} be a pair of integers for which K1
ij(�	) = 1. Let s	 be the stable recursion function of the

model �	, and denote by V(i,j) the set of all control input characters v � A for which s	(xi,v) = xj. Note that, for
all i,

(6.15) V(i,j) I V(i,j	) = � if j � j	,

since different target states require different inputs. As K1
ij(�	) = 1, it follows by (6.14) that also Kij(�,�) = 1. By

Corollary 6.8, there is then a complete set of strings from the state xi to the state xj. Select a character v � V(i,j).
In view of Theorem 5.7, there is controller F(xi,xj,v) that takes the machine � from a stable combination with xi

to a stable combination with xj; here, the character v activates the controller. Extend the activation of this
controller to all characters v � V(i,j), so that any character v � V(i,j) can be used to start the (same) controller
action. Denote the resulting controller by F(xi,xj,V(i,j)).

Next, we define the following operation of join for combining two controllers (see also VENKATRAMAN and
HAMMER [2006c]). Given two controllers F(xi,xj,V(i,j)) and F(xi	,xj	,V(i	,j	)), the join

C := F(xi,xj,V(i,j)) � F(xi	,xj	,V(i	,j	))

is constructed as follows:
(i) When xi = xi	 and the external input character is v, then

C := !
"
#F(xi,xj,V(i,j)) if v � V(i,j)‚
F(xi	,xj	,V(i	,j	)) if v � V(i	,j	);

(ii) If (xi,xj) � (xi	,xj	), let the machine � be in a stable combination with the state xi, when the controller C
receives the input character v. Then,

C := F(xi,xj,V(i,j)).

This construction of C is consistent by (6.15) (see VENKATRAMAN and HAMMER [2006c] for more details).

Now, let T � {1, 2, ..., n} � {1, 2, ..., n} be the set of all pairs of integers for which K1
ij(�	) = 1. Then, a slight

reflection shows that the joined controller

F := �i,j�T F(xi,xj,V(i,j))

makes the machine � match the model �	. Theorem 5.7, the closed loop machine is well defined and operates in
fundamental mode. This concludes our proof. �

7. GENERAL MODEL MATCHING

7.1. Adversarial Detectability

Let � = (A�B,X,f,�) be an asynchronous machine with adversarial input. Assume that � is at a stable
combination (x,u,w), when the adversarial input value changes to w	. This change may or may not cause � to
experience a transition to a new stable state. Presently, consider the case when the change in the adversarial input
from w to w	 causes � to move to a new state x	 � x. We refer to such a transition as an adversarial transition.
In this section, we discuss the existence and the design of a state feedback controller Ca that automatically
counteracts adversarial transitions of �.

A basic requirements is, of course, that the controller Ca operate in fundamental mode to guaranty
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deterministic behavior of the closed loop machine. Being a state feedback controller, Ca has access to the current
state of �, and it generates the control input of �. To obtain fundamental mode operation of the closed loop
machine with the controller Ca, it must be possible to determine from the state of � whether or not � has reached
its next stable combination. This leads us to the following, which is closely analogous to Definition 4.4.

(7.1) DEFINITION. Let � = (A�B,X,f) be an input/state asynchronous machine with adversarial uncertainty �.
Assume that � is in a stable combination at the state x with the control input character u, when a change in the
adversarial input causes � to move to the state x	. Then, the pair (x,u) is adversarially detectable with respect to
the adversarial uncertainty � if it can be determined from the current state of � whether or not � has reached its
next stable combination. �

Without adversarial detectability, it is not possible to guaranty fundamental mode operation of a closed loop
machine controlled by a state feedback controller. In other words, operation must be restricted to adversarially
detectable pairs of the controlled machine �.

Assume then that the machine � is at a stable combination (x,u,w), when the adversarial input character
changes to w	, causing � to transition to a stable combination with the state x	 � x. This transition may, of course,
consist of a number of intermediate steps, say x0 := x, x1 := f(x0,u,w	), x2 = f(x1,u,w	), ..., xq := f(xq–1,u,w	) = x	, xq :=
f(xq,u,w	). Similarly to (4.1) and (4.2), we denote

(7.2) !
"
#�(x‚u‚w	) := x1...xq‚
�[x‚u‚�] := {�(x‚u‚w	) : w	 � �}.

The following statement is closely analogous to Theorem 4.5 and has a similar proof.

(7.3) THEOREM. Let � = (A�B‚X‚f,�) be an input/state asynchronous machine with adversarial input. Assume
that � is in a stable combination with the state x and the control input value u. In the notation of (3.3) and (7.2),
the following two statements are equivalent.
(i) The pair (x,u) is adversarially detectable with respect to the adversarial uncertainty �.
(ii) States of the set s�(x,u) appear only at the end of strings belonging to �[x,u,�]. �

As indicated earlier, to guaranty fundamental mode operation of the closed loop machine, the use of the
machine � must be restricted to adversarially detectable pairs. This leads us to the following notion. (For a string �
= w|u1u2...uq � B�A+, denote by �+

c � := uq the last control input character of the string.)

(7.4) DEFINITION. Let � = (A�B,X,f,�) be an asynchronous machine having adversarial uncertainty �, n states,
and the combined matrix of stable transitions R(�,�). The reduced matrix of stable transitions Rr(�,�) of � is
obtained by removing from each column j = 1, 2, ..., n of R(�,�) all strings � for which the pair (xj,�+

c �) is not
adversarially detectable with respect to the uncertainty �. �

(7.5) EXAMPLE. We calculate now the reduced matrix of stable transitions for the matrix R(�,�) of Example 6.4.
Considering the transition table of the machine � as provided in Example 2.2, note that there is only one transition
that can be caused by the adversarial input, namely, the transition initiated by a switch of the adversarial input from
the character � to the character �, while � is at the state x1 and the control input is b. Symbolically, the
transition can be represented by (x1,b,�) � (x1,b,�) � (x2,b,�). For this transition, recalling that s is the stable
recursion function of �, we have s(x1,b,�) = x2. Hence, �[x1,b,�] = x1 and �[x1,b,�] = x2, so that

�[x1,b,�] = {x1, x2}.

In this case, we have

s�(x1,b) ={x1, x2}.

As we can see, the states x1, x2 appear only at the end of strings belonging to �[x1,b,�]. Therefore, by Theorem 7.3,
the pair (x1,b) is adversarially detectable, and we have Rr(�,�) = R(�,�) in this case. �

The reduced matrix of stable transitions characterizes all transitions of the machine � that end at adversarially
detectable pairs. This matrix forms the basis for designing controllers that can counteract adversarial transitions.
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7.2. Reversing Adversarial Transitions.

Assume that the machine � is at an adversarially detectable stable combination with the pair (xs,u) � X�A,
when a change in the adversarial input causes � to move to a stable combination with the state xt; of course, by
fundamental mode operation, the control input value u is kept constant during this process. As this transition started
from an adversarially detectable pair, a state feedback controller can determine from the current state of � whether
or not � has reached its next stable combination. Having been caused by the adversarial input, this transition is
undesirable; our objective is to design a state feedback controller Ca that automatically reverses this transition. In
this way, Ca will counteract the effects of the adversarial input.

Consider then an adversarial transition from a stable combination with the pair (xs,u) to a stable combination
with the pair (xt,u). Letting � be the adversarial uncertainty, the set of adversarial input characters that can give
rise to such a transition is

(7.6) �(xs,xt,u) := sa(xs,u,xt) I �.

Clearly, this transition is possible if and only if �(xs,xt,u) � �, and we reach the following.

(7.7) DEFINITION. Let � be an asynchronous machine with the state set X = {x1, x2, ..., xn} and the adversarial
uncertainty �, and assume that � is in a stable combination with the control input character u. Then, for a pair of
integers s, t � (1, 2, ..., n}, the adversarial transition indicator is

(7.8) K(xs,xt,u) := !
"
#1 if �(xs,xt,u) � �‚
0 otherwise. �

The discussion leading to Definition 7.7 implies the next statement.

(7.9) LEMMA. Assume that the closed loop machine � is in a stable combination at the state xs with the control
input character u. Then, the following two statements are equivalent.
(i) There is an adversarial transition to a stable combination with the state xt.
(ii) K(xs,xt,u) = 1. �

To address the question of whether an adversarial transition is reversible or not, it is convenient to introduce the
following.

(7.10) DEFINITION. Let � be an asynchronous machine with adversarial input. An adversarial transition from a
stable combination with the state xs to a stable combination with the state xt is reversible if there is a state
feedback controller that drives � back to a stable combination with the state xs, without specific information about
the adversarial character that caused the transition. �

To examine reversible transitions, assume that the machine � is in a stable combination with the state xs and
the control input character u, when an adversarial transition to the state xt occurs. In view of (7.6), the adversarial
uncertainty immediately after the transition is �(xs,xt,u). Using the reduced matrix of stable transitions Rr(�,�), we
construct the scalar function

(7.11) Kr(xs,xt,u) :=
!*
"
*#1 if Rr

ts(�,�) includes a complete set of strings
with respect to the adversarial uncertainty �(xs‚xt‚u)‚

0 otherwise.

A slight reflection indicates that the following is true.

(7.12) LEMMA. In the above notation, an adversarial transition from xs to xt is reversible if and only if Kr(xs,xt,u)
= 1. �

Next, let U(xs) � A be the set of all control input characters of the machine � that may appear in stable
combinations with the state xs. For various practical considerations, the designer of the state feedback controller C
may choose to avoid using some of these control input characters. The set of active control input characters of � at
the state xs is the subset S(xs) � U(xs) of all control input characters that may be applied by the controller C,
while the closed loop machine �c is in a stable combination at the state xs of �. If xs does not appear as part of a
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stable state of the closed loop machine, then S(xs) := �. When all states of � appear as stable states of the closed
loop machine �c and all possible control input characters of � are utilized, we have

(7.13) S(xs) = U(xs), s = 1, 2, ..., n.

Equality (7.13) describes the most common situation. When it is valid, we say that there are no idle control input
characters.

(7.14) DEFINITION. Let � be an asynchronous machine with adversarial input having the n states x1, ..., xn. Let
S(xs) be the set of active control input characters at the state xs. The reversal matrix A(S,�) is an n�n numerical
matrix with the entries

Ast(S,�) := !
"
#min {Kr(xs‚xt‚u) – K(xs‚xt‚u) : u � S(xs)} if S(xs) � �‚
0 if S(xs) = �‚

s, t = 1, 2, ..., n. �

For a numerical matrix D, the inequality D � 0 means that D has no negative entries.

(7.15) EXAMPLE. We continue our examination of the machine � of Example 2.2. In view of Example 7.5, there
is only one adversarial transition we have to consider, namely, the transition x2 = s(x1,b,�). Assume that the
controller is implemented with no idle control input characters, so that S(x1) = U(x1). From (7.6), we have

�(x1,x2,b) = sa(x1,b,x2) I � = {�}I{�,�} = {�}.

From (7.8), we get that K(x1,x2,b) = 1. In Example 7.5, we have seen that Rr(�,�) = R(�,�). Also, from Example
6.7, we have that the complete set of strings (21(�,�) = {�|ab,�|a,�|ba}. Consequently, Rr

21(�,�) includes a
complete set of strings with respect to the adversarial uncertainty �(x1,x2,b) = {�}. Substituting into (7.11), we
obtain that Kr(x1,x2,b) = 1, so that A12(U,�) = 0. As there are no adversarial transitions other than the transition
from x1 to x2, we have that K(xs,xt,u) = 0 for all (s,t) � (1,2). Whence, A(U,�) � 0 in this case. �

We can characterize now the conditions under which a transition caused by the adversarial input can be
counteracted by a state feedback controller.

(7.16) THEOREM. Let � be an asynchronous machine with adversarial input, and let X = {x1, ..., xn} be the state
set of �. Assume that � is operated by a state feedback controller using the active control input character sets S(xs),
s = 1, 2, ..., n, and let A(S,�) be the corresponding reversal matrix. Then, the following two statements are
equivalent.
(i) All adversarial transitions of the closed loop machine can be automatically reversed in fundamental mode
operation.
(ii) A(S,�) � 0.

Proof. Consider an adversarial transition from a stable combination with the state xs to a stable combination with
the state xt. We have two cases here, depending on the set S(xs) of active control input characters:

Case 1: S(xs) = �: then, the state xs does not appear in a stable combination of the closed loop machine, and hence
no adversarial transitions can start at the state xs. Then, Ast(S,�) = 0 by Definition 7.14.

Case 2: S(xs) � �: By Lemma 7.9, an adversarial transition from xs to xt is possible if and only if K(xs,xt,u) = 1
for a control input value u � S(xs). By Lemma 7.12, this transition can be reversed if and only if Kr(xs,xt,u) = 1. As
K(xs,xt,u) and Kr(xs,xt,u) can only take the values 0 or 1, we conclude that the adversarial transition from xs to
xt is reversible if and only if Kr(xs,xt,u) – K(xs,xt,u) � 0. As this is true for all states xs and xt and for all input
values u � S(xs), it follows that (i) and (ii) are equivalent. This concludes our proof. �

Most often, a state feedback controller employs every control input character of the set U(xs). In such case, the
combination of Theorems (6.12) and (7.16) yields the following statement, which is the main result of this section.

(7.17) THEOREM. Let � = (A�B,X,f,�) be an input/state machine with adversarial input, and assume that � has
no idle control input characters. Let U(x) be the set of control input characters that appear in stable combinations
with the state x, let A(U,�) be the corresponding reversal matrix, and let K(�,�) be the control skeleton matrix of
�. Let �	 = (A,X,s	) be a stable-state input/state machine with no adversarial input, having the skeleton matrix
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K(�	). Then, the following two statements are equivalent:
(i) There is a controller C for which �c|s = �	, where �c is well posed and operates in fundamental mode.
(ii) K(�,�) � K(�	) and A(U,�) � 0. �

Theorem 7.17 provides a comprehensive solution to the model matching problem for asynchronous machines
with adversarial inputs. As we can see, the solution is entirely characterized by two numerical matrix inequalities.
As the model machine �	 has no adversarial input, the controller C, when it exists, counteracts any effects of
adversarial activity.

(7.18) EXAMPLE. Combining now the results of Examples 6.13 and 7.15, we conclude that condition (ii) of
Theorem 7.17 is valid for the machine � of Example 2.2 and the model �	 of Example 3.2. Therefore, Theorem
7.17 assures us that there is a controller C that controls � so that the closed loop machine �c is stably equivalent
to the model �	, thus solving the perturbed model matching problem in this case. The construction of the controller
C is described in section 9 below. �

8. CONTROLLER STRUCTURE

We summarize now the structure of a controller that solves the model matching problem with adversarial inputs.
In general terms, the controller consists of two components: a component that achieves model matching and a
component that reverses adversarial transitions.

Consider the problem of controlling the machine � to match the model �	. The construction of the model
matching component of the controller is described in the proof of Theorem 6.12. Regarding adversarial transitions -
these, by their nature, occur while the model �	 remains in a stable combination, since the model has no adversarial
input. Therefore, an adversarial transition can be characterized as follows (refer to the diagram below): it is a
departure from a stable combination of the closed loop �c that is not preceded by a change of the external command
input v. We describe next the controller in brief terms.

(i) The state feedback controller F controls the machine � to achieve model matching in response to the external
command input v. The controller F is built following the procedure described in the proof of Theorem 6.12.

(ii) The comparator detects stable states of �c that differ from stable states of �	. When such a difference is
detected, the comparator activates the state feedback controller F to drive � back to a stable combination with the
correct state.

An example of the construction of the controller C is provided in the next section.

�

F

Comparator

Model �	

C

w

x
v u

(8.1)
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9. EXAMPLE

In this section, we construct a controller C that solves the model matching problem for the machine � of
Example 2.2 and the model �	 of Example 3.2; the adversarial uncertainty is � = {�, �}. It can be shown that
condition (ii) of Theorem 7.17 is satisfied in this case. Below, we demonstrate the construction of a model matching
controller. Recall that s is the stable transition function of � and s	 is the stable transition function of �	. An
examination of the transition tables of the machines � and �	 shows that only the following three transitions of �
are different from corresponding transitions of �	:

s(x1,b,�) = x2 :: s	(x1,b) = x1;
s(x2,a,�) = x3 :: s	(x2,a) = x1;
s(x3,b,�) = x2 :: s	(x3,b) = x1.

Using the procedure described in the proof of Theorem 6.12, we build three state feedback controllers
F(x1,x1,b), F(x2,x1,a), and F(x3,x1,b), each of which respectively "corrects" one of these transitions.

1) Construction of the controller F(x1,x1,b):

We use the state set {0, 1, 2, 3} for F(x1,x1,b). Note that (x1,a) is a detectable pair. Upon detecting a
detectable transition of � to the state x1 with the control input value a, the controller F(x1,x1,b) moves to a stable
combination with its state 1, while continuing to apply to � the input character it receives:

�(0,(z,t)) := 0 for all (z,t) � (x1,a),
�(0,(x1,a)) := 1,
�(1,(x1,a)) := 1.
�(0,(z,t)) := t for all (z,t) � X�A,
�(1,(z,t)) := t for all (z,t) � X�A,

Next, upon receiving the external input character b, the controller F(x1,x1,b) moves to a stable combination with its
state 2, namely:

�(1,(z,t)) := 1 for all (z,t) � (x1,b),
�(1,(x1,b)) := 2,
�(2,(x1,b)) := 2.

At this point, the controller F(x1,x1,b) must start to generate a string of control input characters to keep � at the
state x1. An examination of the entry (11(�,�) in Example 6.7 shows that the single control input character a
satisfies this requirement. So we set the output function of the controller F(x1,x1,b) as

�(2,(x1,t)) := a for all t � A.

When the controller F(x1,x1,b) detects the state x1 of �, it moves to a stable combination with the state 3, namely,

�(2,(z,t)) := 2 for all (z,t) � (x1,a),
�(2,(x1,b)) := 3,
�(3,(x1,b)) := 3,

and continues to generate the control input character a:

�(3,(x1,t)) := a for all t � A.

Finally, upon a change of the external input character, F(x1,x1,b) resets to its initial state 0:

�(3,(z,t)) := 0 for all (z,t) � (x1,b).

2) The construction of the controllers F(x2,x1,a) and F(x3,x1,b) is similar to the construction of F(x1,x1,b).

3) Counteracting adversarial transitions:

Recall from Example 7.15 that the machine � has only one transition that can be caused by the adversarial
input - the transition x2 = s(x1,b,�) when the adversarial input character changes from � to �. Assume then that
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the machine � is at a stable combination with the pair (x1,b), when the state of � switches to x2. By Example
7.15, the adversarial uncertainty is then �(x1,x2,b) = {�}. We build now a controller Fa(x2,x1) that counteracts this
action of the adversarial input, and returns � to the state x1 immediately after the comparator detects the transition
to x2. The output d of the comparator can take two values: d := 1 when the stable state of �c is different from the
stable state of �	, and d := 0 when the two stable states are equal.

Referring to Examples 6.7, 7.5, and 7.15, we have that the complete set of strings {�|ab,�|a,�|ba} is included
in the entry (21(�,�); that Rr(�,�) = R(�,�); and that �(x1,x2,b)={�}. Consequently, the single character a forms a
control input string that takes � back to the state x1. The construction of the controller Fa(x2,x1) is reminiscent of
the construction of the controller F(x1,x1,b) we have described earlier, and is as follows. Let � be the recursion
function of Fa(x2,x1), let μ be its output function, and let { 0,  1,  2} be its state set. Starting at a stable
combination with the pair (x2,b), set

�( 0,(z,t,0)) :=  0 for all (z,t) � (x2,b);
μ( 0,(z,t)) := t for all (z,t) � X�A;
�( 0,(x2,b,1)) :=  1;
�( 1,(x2,b,d)) :=  1, d � {0, 1};
μ( 1,(z,t)) := a for all (z,t) � X�A;
�( 1,(x1,b,d)) :=  2, d � {0, 1};
�( 2,(x1,b,d)) :=  2, d � {0, 1};
μ( 2,(z,t)) := a for all (z,t) � X�A;
�( 2,(z,t,d)) :=  0 for all (z,t) � (x1,b).

Finally, we assemble the combined state feedback controller F by using the join operation employed in the
proof of Theorem 6.12:

F = F(x1,x1,b) � F(x2,x1,a) � F(x3,x1,b) � Fa(x2,x1).

When this controller is inserted into the control diagram (8.1), it eliminates the effects of the adversarial input and
makes � behave like the deterministic and unperturbed model �	 of Example 3.2.
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